calculate the amount of calcium oxide required when it reacts with 852 gm of p 4 o 10

Solution:

Reaction:

$$
6 \mathrm{CaO}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

Amount of substance of $P_{4} O_{10}$:

$$
v\left(P_{4} O_{10}\right)=\frac{m\left(P_{4} O_{10}\right)}{\operatorname{Mr}\left(P_{4} O_{10}\right)}=\frac{852}{284}=3 \text { moles }
$$

According to the reaction equation:

$$
\frac{v(\mathrm{CaO})}{v\left(P_{4} O_{10}\right)}=\frac{6}{1}
$$

Thus:

$$
v(\mathrm{CaO})=6 * v\left(P_{4} O_{10}\right)=6 * 3=\mathbf{1 8} \text { moles }
$$

Mass of CaO

$$
m(C a O)=v(C a O) * M r(C a O)=18 * 56=\mathbf{1 0 0 8} \mathbf{g m}
$$

Answer:

1008 gm

