One mole is a quantity of N_{0} atoms or molecules. Therefore, the atomic weight is the weight of one mole of atoms, and the molecular weight is the weight of one mole of molecules. The N_{0} is Avogadro's number, and it's equal to the following:

$$
\mathrm{N}_{0}=6.022 \cdot 10^{23}
$$

The molecular weight Mw of a molecule, multiplied by the number of moles n , is equal to the total weight W of the molecules:

$$
\mathrm{W}=\mathrm{n} \cdot \mathrm{Mw}
$$

So one mole includes $6.022 \cdot 10^{23}$ particles.

For O_{2}, one mole has weight of 32 g (from molecular weight)
mass of one molecule $=6.022 \cdot 10^{23} / 32 \mathrm{~g}=\mathbf{5 . 3 1 4} * \mathbf{1 0}^{-23} \mathbf{g}$
mass of one atom is $5.314 * 10^{-23} \mathrm{~g} / 2=\mathbf{2 , 6 5 7} * \mathbf{1 0}^{-23} \mathbf{g}$

