$\mathrm{h} 2+\mathrm{cl} 2-\& \mathrm{gt} ; 2 \mathrm{HCl}$ if you start with .250 of H 2 and Cl 2 determine equilibrium concentrations if $\mathrm{keq}=2.51 \times 1 \times 10-4$ what is the answer

Solution:

From the equation of reaction at starting point the concentrations of H_{2} and Cl_{2} were 0.250 M and concentration of HCl was 0 . The x moles of H_{2} and Cl_{2} have been reacted at equilibrium point and $2 x \mathrm{M}$ of HCl has been found. So, the equilibrium concentrations of H_{2} and Cl_{2} are ($0.25-x$) M and HCl is $2 x \mathrm{M}$.
The equilibrium constant of this reaction is:
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HCl}]_{\mathrm{eq}}{ }^{2}}{\left[\mathrm{H}_{2}\right]_{\mathrm{eq}} \cdot\left[\mathrm{Cl}_{2}\right]_{\mathrm{eq}}}=\frac{[2 \mathrm{x}]^{2}}{[0.25-\mathrm{x}] \cdot[0.25-\mathrm{x}]}=2.51 \cdot 10^{-4}$
$2.51 \cdot 10^{-4} \cdot\left(0.0625-0.5 x+x^{2}\right)=4 x^{2}$
$3.999749 x^{2}+1.255 \cdot 10^{-4} x-1.56 \cdot 10^{-5}=0$
We calculate the $x: x_{1,2}=\frac{\left.-1.255 \cdot 10^{-4} \pm \sqrt{1.255 \cdot 10^{-4}-4 \cdot 3.999749 \cdot(-1.56} \cdot 10^{-5}\right)}{2 \cdot 3.999749}$
$\mathrm{x}_{1}=7.84 \cdot 10^{-6}, \mathrm{x}_{2}=-3.92 \cdot 10^{-5}$ (the second gives negative concentrations so is wrong).
The equilibrium concentrations of H_{2} and Cl_{2} are: $0.25-7.84 \cdot 10^{-6}=0.249992 \mathrm{M}$.
The equilibrium concentration of HCl is: $2 \cdot 7.84 \cdot 10^{-6}=1.568 \cdot 10^{-5} \mathrm{M}$.

Answer:

The equilibrium concentrations of H_{2} and Cl_{2} are 0.249992 M and the equilibrium concentration of HCl is $1.568 \cdot 10^{-5}$.

