What volume of ammonia is evolved when ammonium chloride is passed through 1.48 grams of calcium hydroxide?

Solution: The equation of chemical reaction between ammonium chloride and calcium hydroxide is:

$$
2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{NH}_{3} \uparrow+\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

We will assume that the quantity of ammonium chloride is in excess to the substance amount of calcium hydroxide, and all calcium hydroxide fully reacts with ammonium chloride.

As you see, 1 mol of calcium hydroxide produces 2 moles of gaseous ammonia. According to the Avogadro's law, at the STP 1 mole of gas has a volume of 22.4 liters.

We will calculate the amount of substance of obtained ammonia:
$n\left(\mathrm{NH}_{3}\right)=2 n\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=2 \frac{m\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)}{M\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)}$, where $\mathrm{n}, \mathrm{m}, \mathrm{M}$ are the amount of substance, mol, mass, g ,
molar mass, $\mathrm{g} / \mathrm{mol}$, respectively. $\mathrm{M}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=40+2 \cdot 17=74 \mathrm{~g} / \mathrm{mol}$;
$n\left(\mathrm{NH}_{3}\right)=2 \cdot \frac{1.48}{74}=0.04 \mathrm{~mol}$;
Then, volume of obtained ammonia at the STP is $V\left(\mathrm{NH}_{3}\right)=n\left(\mathrm{NH}_{3}\right) \cdot V_{m}=0.04 \cdot 22.4=0.9$ liters.
Answer: 0.9 liters.

