Task:

What volume of Ammonia is evolved when Ammonium chloride is passed through 1.48 grams of CalciumHydroxide

Solution:

The chemical equation of the reaction is
$2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{CaCl}_{2}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
The number of moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ is
$\mathrm{n}(\mathrm{mol})=\mathrm{m}(\mathrm{g}) / \mathrm{MW}(\mathrm{g} / \mathrm{mol})$
$\mathrm{MW}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=\mathrm{AW}(\mathrm{Ca})+2 \cdot \mathrm{AW}(\mathrm{O})+2 \cdot \mathrm{AW}(\mathrm{H})=40+2 \cdot 16+2 \cdot 1=74 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=1.48 / 74=0.02 \mathrm{~mol}$
According to the chemical equation the number of moles of NH 3 is
$\mathrm{n}\left(\mathrm{NH}_{3}\right)=2 \cdot \mathrm{n}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=2 \cdot 0.02=0.04 \mathrm{~mol}$
The volume of NH_{3} at STP is
$\mathrm{V}(\mathrm{L})=\mathrm{n}(\mathrm{mol}) \cdot \mathrm{V}_{0}(\mathrm{~L})$
$\mathrm{V}_{0}(\mathrm{~L})=22.4 \mathrm{~L}$ - the volume of 1 mol of gas at STP ($\mathrm{p}=1 \mathrm{~atm}, \mathrm{~T}=273 \mathrm{~K}$)
$V(L)=0.04 \cdot 22.4=0.896 L$
Answer: $\mathrm{V}(\mathrm{L})=0.896 \mathrm{~L}$

