Task:

A mixture containing $0.538 \mathrm{~mol} \mathrm{He}(\mathrm{g})$ and $0.103 \mathrm{~mol} \mathrm{Ar}(\mathrm{g})$ is confined in a $7.00-\mathrm{L}$ vessel at 250 C . Calculate the partial pressure of helium and the total pressure of the mixture in atm.

Solution:

To calculate the total pressure of the mixture we have to use the Ideal Gas Law:
$\mathrm{P} \cdot \mathrm{V}=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{T}$
P - the total pressure (atm)
V - the volume (L)
n - the total number of moles of gases
R - universal gas constant ($0.082 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$)
T-Kelvin temperature
The total number of moles is
$\mathrm{n}=0.538+0.103=0.641 \mathrm{~mol}$

Kelvin temperature is
$\mathrm{T}(\mathrm{K})=273+\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{T}(\mathrm{K})=273+25=298 \mathrm{~K}$
The total pressure is
$\mathrm{P}=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{T} / \mathrm{V}$
$P=0.641 \cdot 0.082 \cdot 298 / 7.00=2.24 \mathrm{~atm}$
The partial pressure of gas in the mixture depends on the total pressure and the mole fraction
$P_{i}=x_{i} \cdot P$
The mole fraction is
$\mathrm{X}_{1}=\mathrm{n}_{1} /\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)$

The mol fraction of He
$X(\mathrm{He})=0.538 / 0.641=0.84$
The mol fraction of Ar
$X(A r)=0.103 / 0.641=0.16$
The partial pressure of He is
$P_{\text {He }}=0.84 \cdot 2.24=1.88 \mathrm{~atm}$

The partial pressure of Ar is $\mathrm{P}_{\mathrm{Ar}}=0.16 \cdot 2.24=0.36 \mathrm{~atm}$

Answer: $\mathrm{P}=2.24 \mathrm{~atm} ; \mathrm{P}_{\mathrm{He}}=1.88 \mathrm{~atm} ; \mathrm{P}_{\mathrm{Ar}}=0.36 \mathrm{~atm}$

