Show that the hydroxide-ion concentration in an aqueous solution is $1 \times 10^{\wedge}-4 \mathrm{M}$ when the hydronium-ion concentration is $1 \times 10^{\wedge}-10 \mathrm{M}$. Recall that $10^{\wedge} \mathrm{a} \times 10^{\wedge} \mathrm{b} x=10^{\wedge}(\mathrm{a}+\mathrm{B})$

Solution

Water molecules auto-dissociate into hydronium and hydroxide ions in the following equilibrium:

$$
2 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

The concentration product of hydronium and hydroxide ions in water solution is constant:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[O \mathrm{H}^{-}\right]=1 \cdot 10^{-14} \mathrm{M}^{2}
$$

So, if the hydronium-ion concentration is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \cdot 10^{-10} \mathrm{M}$, then hydroxide-ion concentration is:

$$
\left[\mathrm{OH}^{-}\right]=1 \cdot \frac{10^{-14}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=1 \cdot \frac{10^{-14}}{10^{-10}}=1 \cdot 10^{-4} \mathrm{M} ;
$$

Answer: in this case the hydroxide-ion concentration in an aqueous solution is $10^{-4} \mathrm{M}$ when the hydronium-ion concentration is $10^{-10} \mathrm{M}$, because the concentration product of hydronium and hydroxide ions in water solution is constant ($1 \cdot 10^{-14} \mathrm{M}^{2}$).

