## Task:

calculate the molaity of a solution made by dissolving 40 g NaCl in 300 g of water

## Solution:

It's not clear what we have to find in the task. Is "molaity" a molarity or molality?

So let's find both of them.

## 1) Molarity

$C(M)=n(\mathrm{~mol}) / V(\mathrm{~L})$

C - molarity of the solution ( $\mathrm{mol} / \mathrm{L}$ )
n - number of moles of NaCl
V - volume of solution (L)

The amount of NaCl is
$\mathrm{n}(\mathrm{mol})=\mathrm{m}(\mathrm{g}) / \mathrm{MW}(\mathrm{g} / \mathrm{mol})$
$\mathrm{MW}(\mathrm{NaCl})=\mathrm{MW}(\mathrm{Na})+\mathrm{MW}(\mathrm{Cl})=23+35.5=58.5 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}(\mathrm{NaCl})=40 / 58.5=0.684 \mathrm{~mol}$

The density of water $\mathrm{d}=1.00 \mathrm{~g} / \mathrm{cm}^{3}$
The volume of solution $\approx$ the volume of water
$\mathrm{V}($ water $)=\mathrm{m}(\mathrm{g}) / \mathrm{d}\left(\mathrm{g} / \mathrm{cm}^{3}\right)=300 / 1.00=300 \mathrm{~mL}=0.300 \mathrm{~L}$

The molarity of NaCl solution is
$\mathrm{C}(\mathrm{NaCl})=\mathrm{n}(\mathrm{NaCl}) / \mathrm{V}(\mathrm{L})$
$C(\mathrm{NaCl})=0.684 / 0.300=2.28 \mathrm{M}$
2) Molality - number of moles of substance in 1 kg of solvent
$M(\mathrm{~mol} / \mathrm{kg})=\mathrm{n}(\mathrm{mol}) / \mathrm{m}(\mathrm{kg})$
The number of moles of NaCl we have already found
$\mathrm{n}(\mathrm{NaCl})=0.684 \mathrm{~mol}$
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=300 \mathrm{~g}=0.300 \mathrm{~kg}$
The molality of the solution is
$\mathrm{M}(\mathrm{mol} / \mathrm{kg})=\mathrm{n}(\mathrm{mol}) / \mathrm{m}(\mathrm{kg})$
$\mathrm{M}(\mathrm{NaCl})=\mathrm{n}(\mathrm{NaCl}) / \mathrm{m}(\mathrm{H} 2 \mathrm{O})$
$\mathrm{M}(\mathrm{NaCl})=0.684 / 0.300=2.28 \mathrm{~mol} / \mathrm{kg}$
In our case the molarity is equal to molality
Answer: $\mathrm{C}(\mathrm{NaCl})=2.28 \mathrm{M} ; \mathrm{M}(\mathrm{NaCl})=2.28 \mathrm{~mol} / \mathrm{kg}$

