Task:

a flat piece mild steel was coated with 445 micrometers thick layer of zinc. he surface area of the plate is $85.47 \mathrm{~cm}^{\wedge} 2$. the density is 7.13 . how much zinc atoms are used in the coating?

Solution:

The volume of the layer = thickness x surface area Let's convert micrometers to cm:
1 micrometers $=1 \cdot 10^{-6} \mathrm{~m}$
$1 \mathrm{~cm}=1 \cdot 10^{-2} \mathrm{~m}$
1 micrometers $=1 \cdot 10^{-4} \mathrm{~cm}$
that's why
445 micrometers $=445 \cdot 10^{-4} \mathrm{~cm}=0.0445 \mathrm{~cm}$

Now we can find the volume of the layer:
$V=0.0445 \mathrm{~cm} \cdot 85.47 \mathrm{~cm}^{2}=3.80 \mathrm{~cm}^{3}$

The mass of the layer is
$\mathrm{m}(\mathrm{g})=\mathrm{d}\left(\mathrm{g} / \mathrm{cm}^{3}\right) \cdot \mathrm{V}\left(\mathrm{cm}^{3}\right)$
d- density of the layer
$\mathrm{m}(\mathrm{g})=7.13 \mathrm{~g} / \mathrm{cm}^{3} \cdot 3.80 \mathrm{~cm}^{3}=27.1 \mathrm{~g}$

The number of moles of Zn in this layer:
$\mathrm{n}(\mathrm{mol})=\mathrm{m}(\mathrm{g}) / \mathrm{MW}(\mathrm{g} / \mathrm{mol})$
$n(Z n)=27.1 \mathrm{~g} / 65.4 \mathrm{~g} / \mathrm{mol}=0.414 \mathrm{~mol}$

According to Avogadro Law:
$\mathrm{n}(\mathrm{mol})=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$
n - number of moles
N - number of atoms
N_{A} - Avogadro constant

The number of atoms is
$\mathrm{N}=\mathrm{n}(\mathrm{mol}) \cdot \mathrm{N}_{\mathrm{A}}$
$\mathrm{N}=0.414 \cdot 6.02 \cdot 10^{23}=2.49 \cdot 10^{23}$
Answer: $\mathrm{N}=2.49 \cdot 10^{23}$ atoms

