20 mL of $\mathrm{Al}(\mathrm{OH})_{3}$ reacts completely with 50 mL of 1 mol of HBr . What is the concentration of $\mathrm{Al}(\mathrm{OH})_{3}$?

Solution:

We write the equation for the reaction:
$\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HBr}=\mathrm{AlBr}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

$$
M\left(\mathrm{Al}(\mathrm{OH})_{3}\right)=\frac{n\left(\mathrm{Al(OH)}_{3}\right)}{v\left(\mathrm{Al(OH)}_{3}\right)}=\frac{m o l e}{l}
$$

$$
M-\text { concentration of the substance }
$$

Convert your mL solutions to L in order to plug them into formula.

$$
\begin{gathered}
v\left(\left(A l(O H)_{3}\right)\right)=20 m l * \frac{1 l}{1000 m l}=0,020 l \\
v(H B r)=50 m l * \frac{1 l}{1000 m l}=0,050 l
\end{gathered}
$$

Find the amount of the substance HBr , which came in response:

$$
\begin{gathered}
n(H B r)=V(H B r) * M(H B r) \\
n(H B r)=1 * 0.050=0.05 \text { mole }
\end{gathered}
$$

According to the reaction equation we find the amount of the substance $\mathrm{Al}(\mathrm{OH})_{3}$:

$$
\begin{gathered}
\frac{n\left(\mathrm{Al}(\mathrm{OH})_{3}\right)}{n(\mathrm{HBr})}=\frac{1}{3} \\
n\left(\mathrm{Al}(\mathrm{OH})_{3}\right)=\frac{n(\mathrm{HBr})}{3}=\frac{0.05}{3}=0.017 \mathrm{~mole}
\end{gathered}
$$

Find the concentration of $\mathrm{Al}(\mathrm{OH})_{3}$:

$$
M\left(A l(O H)_{3}\right)=\frac{0.017 \mathrm{~mole}}{0.020 l}=0.85
$$

Answer: $0.85 \mathrm{M}\left(\mathrm{Al}(\mathrm{OH})_{3}\right)$

