64 g of each O_{2} and CH_{4} are mixed in a container of volume $41 \mathrm{dm}^{3}$ at $25^{\circ} \mathrm{C}$. If total pressure of gaseous mixture is 2721 torr, find partial pressure of O_{2} and CH_{4}.

Solution: We will assume that O_{2} and CH_{4} behave as ideal gases. Then, according to the Dalton's law, partial pressure of gaseous components in the ideal gas mixture can be calculated as:
$p_{i}=P_{\Sigma} \cdot x_{i}$, where the $p_{i}, x_{i}-$ partial pressure and mole fraction of individual gas component in a gas mixture, respectively; P_{Σ} - total pressure of the gas mixture;
$x_{i}=\frac{n_{i}}{\sum n_{i}}=\frac{m_{i} / M_{i}}{\sum \frac{m_{i}}{M_{i}}}$; where n_{i} is the substance amount of individual gas component, moles;
m_{i}, M_{i} are the mass and molar weight of individual gas component, grams and $\mathrm{g} / \mathrm{mole}$, respectively;
$M_{C H 4}=12+4=16 \mathrm{~g} / \mathrm{mole} ; M_{O 2}=16 \cdot 2=32 \mathrm{~g} / \mathrm{mole}$;
Then, $x_{O_{2}}=\frac{64 / 32}{\frac{64}{32}+\frac{64}{16}}=0.333 ; \quad x_{C H_{4}}=\frac{64 / 16}{\frac{64}{32}+\frac{64}{16}}=0.667$;
$p_{O_{2}}=2721 \cdot 0.333=906$ torr; $p_{C H_{4}}=2721 \cdot 0.667=1815$ torr;

Answer: Partial pressures of O_{2} and CH_{4} are equal to 906 torr and 1815 torr, respectively.

