A quantity of $\mathrm{N} 2(\mathrm{~g}$ originally held at 3.80 atm in a 1.00 L container at 260 C is transferred to a 10.0 L container at 20 C . A quantity of $02(\mathrm{~g}$ is originally at 4.75 atm and 260 C in a 5.00 L container is transferred into the same container. What is the TOTAL PRESSURE in the new container?

Solution.

Find the quantity of N_{2} :

$$
n\left(N_{2}\right)=\frac{P\left(N_{2}\right) * V\left(N_{2}\right)}{R * T\left(N_{2}\right)}=\frac{3.8 * 101325 * 1 * 10^{-3}}{8.314 *(273+26)}=0.155 \text { moles; }
$$

Find the quantity of O_{2} :

$$
n\left(O_{2}\right)=\frac{P\left(O_{2}\right) * V\left(O_{2}\right)}{R * T\left(O_{2}\right)}=\frac{4.75 * 101325 * 5 * 10^{-3}}{8.314 *(273+26)}=0.968 \text { moles; }
$$

Find the total quantity of gases:

$$
n_{\text {total }}=n\left(N_{2}\right)+n\left(O_{2}\right)=0.155+0.968=1.123 \text { moles } ;
$$

Find the total pressure of gases in new container:

$$
P_{\text {total }}=\frac{n_{\text {total }} * R * T_{\text {total }}}{V_{\text {total }}}=\frac{1.123 * 8.314 *(273+20)}{10 * 10^{-3}}=273563 \text { pascals }=\frac{273563}{101325}=2.7 \mathrm{~atm} .
$$

Answer: the total pressure of gases is $\mathbf{2 . 7}$ atm.

