Task:

determine the mass of potassium carbonate which must be dissolved in distilled water to make 250 cm of potassium carbonate solution with a concentration of 0.2 mol dm 3

Solution:

The molarity of solution is
$\mathrm{C}(\mathrm{M})=\mathrm{n}(\mathrm{mol}) / \mathrm{V}(\mathrm{L})$
C - molarity (M)
n - number of moles of substance
V-volume of solution (L)
First of all we have to convert $\mathrm{mol} / \mathrm{dm}^{3}$ to $\mathrm{mol} / \mathrm{L}$
$1 \mathrm{dm}^{3}=1 \mathrm{~L}$
$\mathrm{C}\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)=0.2 \mathrm{~mol} / \mathrm{dm}^{3}=0.2 \mathrm{~mol} / \mathrm{L}=0.2 \mathrm{~mol} / \mathrm{L}$
Also we have to convert volume in cm 3 to L
$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}=1 \cdot 10^{-3} \mathrm{~L}$
V (solution) $=250 \mathrm{~mL}=250 \cdot 10^{-3} \mathrm{~L}=0.250 \mathrm{~L}$
The number of moles of $\mathrm{K}_{2} \mathrm{CO}_{3}$ is
$\mathrm{n}(\mathrm{mol})=\mathrm{C}(\mathrm{M}) \cdot \mathrm{V}(\mathrm{L})$
$\mathrm{n}\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)=0.2 \cdot 0.250=0.05 \mathrm{~mol}$

The mass of $\mathrm{K}_{2} \mathrm{CO}_{3}$ is
$\mathrm{m}(\mathrm{g})=\mathrm{n}(\mathrm{mol}) \cdot \mathrm{MW}(\mathrm{g} / \mathrm{mol})$

The molar weight consists of atomic weights of elements taken from the periodic table $\mathrm{MW}\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)=2 \cdot \mathrm{MW}(\mathrm{K})+\mathrm{MW}(\mathrm{C})+3 \cdot \mathrm{MW}(\mathrm{O})=2 \cdot 39+12+3 \cdot 16=138 \mathrm{~g} / \mathrm{mol}$
$\mathrm{m}\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)=0.05 \cdot 138=6.9 \mathrm{~g}$

Answer: $\mathrm{m}\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)=6.9 \mathrm{~g}$

