Task:

A $999 \mathrm{~mL} \backslash \mathrm{rm} \mathrm{NaCl}$ solution is diluted to a volume of 1.29 L and a concentration of $2.00 \backslash$ it M . What was the initial concentration?

Solution:

The formula for calculation of concentration is
$C(M)=n(m o l) / V(L)$

C - molarity (M)
n - number of moles of substance
V-volume of solution (L)
When the solution is diluted the amount of NaCl (number of moles) remains constant. Only volume of solution changes
$\mathrm{n}_{1}=\mathrm{C}_{1} \cdot \mathrm{~V}_{1}$
$\mathrm{n}_{2}=\mathrm{C}_{2} \cdot \mathrm{~V}_{2}$
C_{1} - molarity (M) of initial solution
n_{1} - number of moles in initial solution
V_{1} - volume of initial solution (L)
C_{2} - molarity (M) of new solution
n_{2} - number of moles in new solution
V_{2} - volume of new solution (L)
$\mathrm{n}_{1}=\mathrm{n}_{2}$
$\mathrm{C}_{1} \cdot \mathrm{~V}_{1}=\mathrm{C}_{2} \cdot \mathrm{~V}_{2}$

The initial concentration is
$\mathrm{C}_{1}=\mathrm{C}_{2} \cdot \mathrm{~V}_{2} / \mathrm{V}_{1}$
$\mathrm{C}_{1}=2.00 \cdot 1.29 / 0.999=2.58 \mathrm{M}$

Answer: $\mathrm{C}_{1}=2.58 \mathrm{M}$

