if 38.71 mL of 0.108 M NaOH solution is required to titrate a $10.0-\mathrm{mL}$ sample of an unknown H 2 SO 4 solution, what is the molarity of the acid solution?

Solution:

The law of equivalence is:
$\mathrm{C}_{\mathrm{N} 1} \cdot \mathrm{~V}_{1}=\mathrm{C}_{\mathrm{N} 2} \cdot \mathrm{~V}_{2}$, where C_{N} - normal concentration, V - volume.
$C_{N}=\frac{C_{i}}{f_{e q}}$, where C_{i} - molar concentration, $f_{e q}$ - equivalence factor.
For NaOH normal concentration is equal to molar concentration because the equivalence factor of NaOH is 1 . So $\mathrm{C}_{\mathrm{N}}=\mathrm{C}_{\mathrm{M}}=0.108 \mathrm{~N}$.
Calculate the normal concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ for the law of equivalence:
$\mathrm{C}_{\mathrm{N}}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\frac{\mathrm{C}_{\mathrm{N}}(\mathrm{Na} \mathrm{OH}) \cdot \mathrm{V}(\mathrm{NaOH})}{\mathrm{V}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)}=\frac{0.108 \cdot 38.71}{10}=0.418 \mathrm{~N}$
The equivalence factor $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.5 , because its diprotonic acid. So, the molar concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $\mathrm{C}_{\mathrm{i}}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\mathrm{C}_{\mathrm{N}}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \cdot \mathrm{f}_{\mathrm{eq}}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.418 \cdot 0.5=0.209 \mathrm{M}$.

Answer:

The molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.209 M .

