if 38.71 mL of 0.108M NaOH solution is required to titrate a 10.0-mL sample of an unknown H2SO4 solution, what is the molarity of the acid solution?

Solution:

The law of equivalence is:

 $C_{N1}{\cdot}V_1{=}C_{N2}{\cdot}V_2,$ where C_N – normal concentration, V- volume.

$$C_{N} = \frac{C_{i}}{f_{eq}}$$
, where C_{i} – molar concentration, f_{eq} - equivalence factor.

For NaOH normal concentration is equal to molar concentration because the equivalence factor of NaOH is 1. So $C_N=C_M=0.108$ N.

Calculate the normal concentration of H_2SO_4 for the law of equivalence:

 $C_N(H_2SO_4) = \frac{C_N(NaOH) \cdot V(NaOH)}{V(H_2SO_4)} = \frac{0.108 \cdot 38.71}{10} = 0.418N$

The equivalence factor H_2SO_4 is 0.5, because its diprotonic acid. So, the molar concentration of H_2SO_4 is $C_i(H_2SO_4)=C_N(H_2SO_4) \cdot f_{eq}(H_2SO_4)=0.418 \cdot 0.5=0.209$ M.

Answer:

The molarity of the H_2SO_4 is 0.209 M.