Task:

$\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ how many grams of CH_{4} were burned if 4.4 grams of CO_{2} was formed?

Solution:

According to the chemical equation the amount of CO_{2} produced is equal to the amount of CH_{4} burned. ($\mathrm{n}\left(\mathrm{CO}_{2}\right)=\mathrm{n}\left(\mathrm{CH}_{4}\right)$)

To calculate the mass of CH_{4} we should find the number of moles of CH_{4} first $\mathrm{n}(\mathrm{mol})=\mathrm{m}(\mathrm{g}) / \mathrm{MW}(\mathrm{g} / \mathrm{mol})$

The molar weight is calculated using atomic weights from the periodic table of elements.
$\mathrm{MW}\left(\mathrm{CO}_{2}\right)=12+2 \cdot 16=44 \mathrm{~g} / \mathrm{mol}$
$\mathrm{MW}\left(\mathrm{CH}_{4}\right)=12+4 \cdot 1=16 \mathrm{~g} / \mathrm{mol}$

As the number of moles is equal we can write
$\mathrm{m}\left(\mathrm{CO}_{2}\right) / \mathrm{MW}\left(\mathrm{CO}_{2}\right)=\mathrm{m}\left(\mathrm{CH}_{4}\right) / \mathrm{MW}\left(\mathrm{CH}_{4}\right)$
The equation for the mass of CH_{4} is
$\mathrm{m}\left(\mathrm{CH}_{4}\right)=\mathrm{m}\left(\mathrm{CO}_{2}\right) \cdot \mathrm{MW}\left(\mathrm{CH}_{4}\right) / \mathrm{MW}\left(\mathrm{CO}_{2}\right)=4.4 \cdot 16 / 44=1.6 \mathrm{~g}$

Answer: $\mathrm{m}\left(\mathrm{CH}_{4}\right)=1.6 \mathrm{~g}$

