Task:

How much space would 2.56 moles of xenon gas occupy at STP?

Solution:

STP (standard temperature and pressure):
$\mathrm{T}=273 \mathrm{~K}$
$\mathrm{P}=1 \mathrm{~atm}$

The Ideal Gas Law shows how the volume of gas depends on pressure, temperature and amount of gas.
$P \cdot V=n \cdot R \cdot T$

P - pressure of gas
V - volume (L)
n - amount of gas (mol)
T-temperature (K)
R - universal gas constant ($0.082 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$)
$V=n \cdot R \cdot T / P$

The volume of 2.56 mol of gas at STP is
$V=2.56 \cdot 0.082 \cdot 273 / 1=57.3 \mathrm{~L}$

Or the second way we can find the volume of the gas at STP is using Avogadro Law.

Avogadro law: 1 mol of gas at STP occupies 22.4 L (it doesn't depend on the kind of gas).

We have 2.56 mol of gas that's why The volume is $\mathrm{V}=2.56 \cdot 22.4=57.3 \mathrm{~L}$

Answer: V = 57.3 L

