Imagine that you have 100 moles total mixture, 7 moles acrylamide, 93 moles of the water.

The weights of the mixture components are 7 moles*71.08 $\mathrm{g} / \mathrm{mol}=497,56 \mathrm{~g}$ acrylamide, and 93 moles $* 18.02 \mathrm{~g} / \mathrm{mole}=1675,86 \mathrm{~g}$ of the water.

The total mixture is $497,56 \mathrm{~g}+1675,86 \mathrm{~g}=2173,42 \mathrm{~g}$ and the weight ratio of styrene to total mixture is $497,56 \mathrm{~g} \mathrm{~g} / 2173,42 \mathrm{~g} * 100 \%=23 \%$ by mass.
$\mathrm{w}=23 \% / 100 \%=0.23$
w of dissolved compound $=\mathrm{m}$ of dissolved compound $/ \mathrm{m}$ of solvent +m of dissolved compound.
$\mathrm{w}=\mathrm{x} / 15 \mathrm{~g}+\mathrm{x}$.
$0.23=x / 15 \mathrm{~g}+\mathrm{x}$.
$x=3,45+0.23 x$
$0,77 x=3,45$
$\mathrm{x}=4,5 \mathrm{~g}$
The mass is 4.5 g

