Volume of gas stp is $1.12 * 10^{-7}$ calculate no of molecules

It is known that 1 mol of any gas has the volume of 22,4 litres upon standard conditions. The number of molecules is calculated by the following equation:

$$
\mathrm{N}=v \times \mathrm{N}_{\mathrm{a}},
$$

where N_{a} - is an Avogadro constant and equals $6,022 \times 10^{23} \mathrm{~mol}^{-1}$. So, it means that 1 mol of any substance contains such number of elementary particles (molecules in our task).

Firstly, let's calculate the number of moles of our gas by a simple proportion:
1 mol of gas - 22,4 litres
X moles of gas -1.12×10^{-7}
So, $\mathrm{X}=\left(1.12 \times 10^{-7} \times 1\right) / 22,4=5 \times 10^{-9}$ moles
Now we can calculate the number of molecules:
$\mathrm{N}=5 \times 10^{-9} \times 6,022 \times 10^{23}=\mathbf{3 , 0 1 1} \times \mathbf{1 0}^{15}$

Answer: total number of molecules in this gas upon stp is $\mathbf{3 , 0 1 1} \times \mathbf{1 0}^{\mathbf{1 5}}$.
Remark: we assumed that given volume of gas was indicated in litres.

