Answer on Question \#64124-Biology - Genetics

Recall that mendel crossed a true breeding tall, purple-flowered pea plants with a true breeding dwarf, white flowered plant. All the f1 plants were tall and purple flowered. If an f1 plant is now self-pollinated, what is the probability of obtaining an $f 2$ plant heterozygous for the genes controlling height and flower color?

Solution

Alleles:
T-tall allele
t - dwarf allele
P - purple-flowered allele
p - white flowered allele

All parental plants are true breeding, so all of them are homozygous.
Genotypes of parental plants:
TTPP - genotypes of tall, purple-flowered pea plant (homozygous dominant)
ttpp - genotype of dwarf, white flowered plant (homozygous recessive)
Gametes produced by parenal plants:

```
ttpp }->\mathrm{ tp
TTPP }->\mathrm{ TP
```

Combine these gametes in the Punnet square for TTPP \times ttpp crossing:

> | |
| :---: |
| TP |
| |

We've obtained all f1 plants with the same genotype TtPp (heterozygote) and with the phenotype of tall and purple flowered plant.

At the next step f1 plants were crossed: TtPp \times TtPp TtPp plant can produce 4 types of gametes:

$$
T t P p \rightarrow T P, T p, t P, t p
$$

So, the Punnet square:
TtPp

	TP	Tp	tP	tp
- TP	TTPP	TTPp	TtPP	TtPp
\% $\quad \mathrm{Tp}$	TTPp	TTpp	TtPp	Ttpp
tP	TtPP	TtPp	ttPP	ttPp
tp	TtPp	Ttpp	ttPp	ttpp

In conclusion, from 16 offsprings (f 2 generation) only 4 plants have genotype TtPp (heterozygous heterozygous for the genes controlling height and flower color)
Probability of TtPp f2 genotype: $4 / 16=1 / 4=25 \%$

Answer:

the probability of obtaining an f 2 plant heterozygous for the genes controlling height and flower color is $1 / 4$

Answer provided by https://www.AssignmentExpert.com

