QUESTION:

How to calculate the molecular mass and length of a segment of B-DNA specifying a $40-\mathrm{kD}$ protein?

SOLUTION:

Average molecular weight of amino acid = 105.2 dalton
Assume that the 40 kDa protein is composed of 380 amino
acids(40000 Da/105.2 Da $=380$).
1 amino acid $=3$ nucleotides
Number of nucleotides $=380^{*} 3=1140 \mathrm{nt}$
Average molecular weight per nucleotide $=499.5 \mathrm{Da}$
Molecular mass of B-DNA is $5.69 * 10^{5} \mathrm{Da}$
In the B-form of DNA, the helix makes a turn every 3.4 nm , and the distance between two neighboring base pairs is 0.34 nm . Hence, there are about 10 pairs per turn.
The contour length of B-DNA $=1140 \mathrm{nt} / 10 \mathrm{nt} * 3.4 \mathrm{~nm}=387.6 \mathrm{~nm}$ (or 3876 A).

