## Sample: Trigonometry - Trigonometry in a Triangle

## Question 1

An airplane is 3800 feet above the ground. The angle of depression between the airplane and the airport is $8.5^{\circ}$. How far does the plane have to fly in order to land?

## Solution.

The situation described can be represented as the following figure:


The plane has to fly a distance marked as $L$ (distance between airport and airplane) in order to land. From the triangle above it is clear that:

$$
3800 / L=\sin \left(8.5^{\circ}\right)
$$

Thus,

$$
L=3800 / \sin \left(8.5^{\circ}\right) \approx 25708.8 \text { feet. }
$$

## Question 2

An airplane is 3800 feet above the ground. The angle of depression between the airplane and the airport is $8.5^{\circ}$. What is the plane's ground distance to the airport?

## Solution.

The plane's ground distance to the airport is marked by $d$ at the figure above. So, we get:

$$
3800 / d=\tan \left(8.5^{\circ}\right)
$$

And thus:
$d=3800 / \tan \left(8.5^{\circ}\right) \approx 25426.4$ feet.

## Question 3

A ladder is leaning against a wall. It is $51 / 2$ feet from the wall and has an angle of elevation $55^{\circ}$. How long is the ladder?

## Solution.

The situation described can be represented as the following figure:


$$
51 / 2 \text { feet }
$$

Length of the ladder is marked as L. Thus, we get:
$51 / 2$ feet $/ L=\cos \left(55^{\circ}\right)$

And we obtain

$$
L=51 / 2 \text { feet } / \cos \left(55^{\circ}\right) \approx 9.59 \text { feet }
$$

Use the following triangle for problems 4 and 5.


## Question 4

Find the exact value of $x$.

## Solution.

By definition of a tangent:

$$
x / 7=\tan \left(30^{\circ}\right)
$$

Thus:

$$
x=7 * \tan \left(30^{\circ}\right)=7 / \sqrt{3} .
$$

## Question 5

Find the exact value of $y$.

## Solution.

By definition of a cosine:

$$
7 / y=\cos \left(30^{\circ}\right)
$$

Thus:

$$
y=7 / \cos \left(30^{\circ}\right)=7 /(\sqrt{3} / 2)=14 / \sqrt{3}
$$

