Sample: Combinatorics Number Theory - The Inclusion-Exclusion Principle

Task 1.

Let n be a positive integer and p_{1}, \ldots, p_{k} be all the different prime numbers that divide n. Consider the Euler function ϕ defined by

$$
\phi(n)=|\{k: 1 \leq k, G C D\{k, n\}=1\}| .
$$

Use the inclusion-exclusion principle to show that

$$
\phi(n)=n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)
$$

Proof. The number n has the following form:

$$
n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}
$$

where p_{1}, \ldots, p_{k} are mutually distinct prime numbers, and $a_{i} \geq 1$.
We will use induction on k.

1) Suppose $k=1$, so $n=p^{a}$, where p is a prime number and $a \geq 1$. Then formula

$$
\phi(n)=n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)
$$

reduces to

$$
\phi(n)=\phi\left(p^{a}\right)=p^{a}\left(1-\frac{1}{p}\right)=p^{a}-p^{a} \cdot \frac{1}{p}=p^{a}-p^{a-1}
$$

Let $A=\left\{1, \ldots, p^{a}\right\}$, and B be the subset consisting of all numbers k that are not relatively prime with $n=p^{a}$, that is

$$
B=\left\{k \mid 1 \leq k \leq p^{a}, G C D\{k, n\} \neq 1\right\}
$$

Hence

$$
A \backslash B=\left\{k \mid 1 \leq k \leq p^{a}, G C D\{k, n\}=1\right\}
$$

and so, by definition of the function ϕ we have that

$$
\phi(n)=|A \backslash B|
$$

Thus we should to prove that

$$
|A \backslash B|=p^{a}-p^{a-1}
$$

Notice that $G C D\left(k, p^{a}\right) \neq 1$, i.e. $k \in B$, if and only if $G C D(k, p) \neq 1$ that is k is divided by p.

Let $C=\left\{1,2, \ldots, p^{a-1}\right\}$. We claim that $k \in B$ if and only if $k=p m$, where $m \in C$.
Indeed, if $k \in B$, so k is divided by p, then $k=p m$ for some m. Since $k=p m \leq p^{a}$, it follows that $m \leq p^{a-1}$, that is $m \in C$.

Conversely, if $m \in C$, then $k=p m \in B$. This implies that $|B|=|C|=p^{a-1}$. Since $|A|=p^{a}$, we obtain that

$$
|A \backslash B|=|A|-|B|=p^{a}-p^{a-1}
$$

2) Suppose we have proved formula

$$
\phi(n)=n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)
$$

for some k. Let us prove it for $k+1$.
Thus assume that

$$
n=x p^{a},
$$

where $x=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}, p$ is a prime number distinct from $p_{1} \ldots, p_{k}$, and

$$
\phi(x)=x \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)
$$

We should prove that

$$
\begin{aligned}
\phi(n) & =n\left(1-\frac{1}{p}\right) \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)=x p^{a}\left(1-\frac{1}{p}\right) \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)= \\
& =x \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) \cdot p^{a}\left(1-\frac{1}{p}\right)=\phi(x)\left(p^{a}-p^{a-1}\right)
\end{aligned}
$$

Let $A=\left\{0, \ldots, x p^{a}-1\right\}$, and $B \subset A$ be the subset consisting of all numbers that are not relatively prime with $x p^{a}$. Notice that $G C D\left(k, x p^{a}\right) \neq 1$ if and only if either $G C D(k, x) \neq 1$ or $G C D(k, p) \neq 1$.

Let also $X \subset A$ be the subset consisting of all numbers that are not relatively prime with x, and $P \subset A$ be the subset consisting of all numbers that are not relatively prime with P.

Then $A \backslash(X \cup P)$ is the set of all $k \in A$ which are relatively prime with $n=x p^{a}$

$$
|A \backslash(X \cup P)|=\{k: 1 \leq k \leq n, G C D(k, n)=1\}
$$

so, by definition of the function ϕ we have that

$$
\phi(n)=|A \backslash(X \cup P)|
$$

Thus we need to prove that

$$
|A \backslash(X \cup P)|=\phi(x)\left(p^{a}-p^{a-1}\right)
$$

Notice that

$$
|A \backslash(X \cup P)|=|A|-|X|-|P|+|X \cap P|
$$

We have that

$$
|A|=n=x p^{a} .
$$

Let us compute $|X|$. Notice that every $k \in A$ can be uniquely written in the following form:

$$
k=\alpha x+\beta
$$

where $\alpha \in\left\{0,1, \ldots, p^{a}-1\right\}$ and $\beta \in\{0, \ldots, x-1\}$. Moreover, $G C D(k, x) \neq 1$, i.e. $k \in X$ if and only if $G C D(\beta, x) \neq 1$. But for such β we have $x-\phi(x)$ possibilities. Therefore

$$
|X|=\left|\left\{0,1, \ldots, p^{a}-1\right\}\right| \cdot(x-\phi(x))=p^{a}(x-\phi(x))
$$

Similarly, every $k \in A$ can be uniquely written in the following form:

$$
k=\gamma p^{a}+\delta
$$

where $\gamma \in\{0,1, \ldots, x-1\}$ and $\delta \in\left\{0, \ldots, p^{a}-1\right\}$. Moreover, $G C D\left(k, p^{a}\right) \neq 1$, i.e. $k \in P$ if and only if $G C D\left(\delta, p^{a}\right) \neq 1$. But for such β we have $p^{a}-\phi\left(p^{a}\right)=p^{a-1}$ possibilities. Therefore

$$
|P|=|\{0,1, \ldots, x-1\}| \cdot p^{a-1}=x p^{a-1}
$$

Finally, suppose $k \in X \cap P$, so $G C D(k, p) \neq 1$ and $G C D(k, x) \neq 1$. Thus $k=m p$ for some $m \in\left\{0, \ldots, x p^{a-1}\right\}$, and $G C D(m, x) \neq 1$ since $G C D(x, p)=1$. Then similarly to computations of $|X|$ we have that

$$
|X \cap P|=p^{a-1}(x-\phi(x))
$$

Hence

$$
\phi(n)=|A \backslash(X \cup P)|=|A|-|X|-|P|+|X \cap P|=
$$

$$
\begin{gathered}
=x p^{a}-p^{a}(x-\phi(x))-x p^{a-1}+p^{a-1}(x-\phi(x)) \\
=x p^{a}-x p^{a}+p^{a} \phi(x)-x p^{a-1}+x p^{a-1}-p^{a-1} \phi(x) \\
=p^{a} \phi(x)-p^{a-1} \phi(x)=\phi(x)\left(p^{a}-p^{a-1}\right) .
\end{gathered}
$$

Thus by induction on k we obtain that formula

$$
\phi(n)=n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)
$$

hold for all n.

