Task 1. Let R be a commutative ring with unity and let $a, b \in R$. Prove that if ab has a multiplicative inverse in R, then both a and b have multiplicative inverses.

Proof. Let c be the multiplicative inverse of ab, so $cab = 1$. Then

$$(ca)b = 1,$$

and so

$$ca = b^{-1}$$

is the inverse of b.

Similarly, since R is commutative, $ab = ba$, and so

$$cba = cab = 1.$$

Thus

$$(cb)a = 1,$$

and therefore

$$cb = a^{-1}$$

is the inverse of a.

Task 2. Let $R = 2\mathbb{Z}$ be the ring of even integers. Show that R contains a maximal ideal M so that R/M is not a field.

Proof. Let $M = 4\mathbb{Z} \subseteq R$ be the ring of integers which are multiples of 4. We claim that R/M is not a field.

We will prove that R/M has zero divisors. Indeed, let $[2] = 2 + M$ be the class of 2 in R/M, and $[0] = M$ be the class of 0 in R/M. Then

since $4 \in M$.

Thus $[2]$ is a zero divisor in R/M, and so R/M is not a field.

Task 3. Prove that if R is a commutative ring with unity and $f = a_nx^n + \cdots + a_0$ is a zero divisor in $R[x]$, then there exists a nonzero b in R such that

$$ba_n = b^2a_{n-1} = b^3a_{n-2} = \cdots = 0.$$

Proof. The assumption that f is a zero divisor in $R[x]$ means that there exists a polynomial $g = b_mx^m + b_{m-1}x^{m-1} + \cdots + b_0$ such that $b_m \neq 0$ and $gf = 0$ in $R[x]$.

We claim that the coefficient b_m at x_m has the required property:

$$b_ma_n = b_m^2a_{n-1} = b_m^3a_{n-2} = \cdots = 0.$$

Indeed, $fg = 0$ means that all the coefficients of fg are zero. Let us write exact formulas for fg:

$$gf = \left(b_mx^m + b_{m-1}x^{m-1} + \cdots + b_0 \right) \cdot \left(a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0 \right) =
\left(b_ma_n \right) x^{n+m} +
\left(b_na_{n-1} + b_{m-1}a_n \right) x^{n+m-1} + \cdots.$$
Thus

\[b_{m}a_{n} = 0, \]
\[b_{m}a_{n-1} + b_{m-1}a_{n} = 0, \]
\[b_{m}a_{n-2} + b_{m-1}a_{n-1} + b_{m-2}a_{n} = 0, \]

and so on.

The first equation is what we need: \(b_{m}a_{n} = 0 \).

Multiplying the second equation by \(b_{m} \) we get:

\[0 = b_{m}(b_{m}a_{n-1} + b_{m-1}a_{n}) = b_{m}^{2}a_{n-1} + b_{m}b_{m-1}a_{n} = b_{m}^{2}a_{n-1} + b_{m-1}(b_{n}a_{n}) = \]
\[= b_{m}^{2}a_{n-1} + b_{m-1} \cdot 0 = b_{m}^{2}a_{n-1}, \]

Thus

\[b_{m}^{2}a_{n-1} = 0. \]

Again, multiplying the third equation by \(b_{m}^{2} \) we obtain

\[b_{m}^{2}(b_{m}a_{n-2} + b_{m-1}a_{n-1} + b_{m-2}a_{n}) = b_{m}^{3}a_{n-2} + b_{m-1}(b_{m}^{2}a_{n-1}) + b_{m-2}b_{m}(b_{n}a_{n}) = \]
\[= b_{m}^{3}a_{n-2} + b_{m-1} \cdot 0 + b_{m-2}b_{m} \cdot 0 = b_{m}^{3}a_{n-2}. \]

Thus

\[b_{m}^{3}a_{n-2} = 0. \]

By similar arguments multiplying coefficient at \(x^{m+n-k} \) by \(b_{m}^{k} \) we will get that

\[b_{m}^{k}a_{n-k+1} = 0 \]

for all \(k \).