Sample: Real Analysis - Real Analysis Task

Problem 1. Let \(\{x_n\} \) and \(\{y_n\} \) be sequences of real numbers with the property
\[
\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = L \in [-\infty, +\infty].
\]
Prove that the sequences \(a_n = \frac{x_n + y_n}{2} \) and \(b_n = \sqrt{x_n y_n} \) are convergent to \(L \).
(For \(\{b_n\} \), it is assumed that \(x_n y_n \geq 0 \), of course.)

Solution. Suppose \(\varepsilon > 0 \).

Since we are given \(\lim_{n \to \infty} x_n = L \), then by definition of the limit of a sequence there exists some \(N_1 \in \mathbb{N} \) such that if \(n > N_1 \) then \(|x_n - L| < \frac{\varepsilon}{2} \).

Similarly, since \(\lim_{n \to \infty} y_n = L \), there exists some \(N_2 \in \mathbb{N} \) such that if \(n > N_2 \) then \(|y_n - L| < \frac{\varepsilon}{2} \).

Let us now choose \(N = \max\{N_1, N_2\} \). For \(n > N \), both of the above inequalities hold. We can therefore add them together:
\[
|x_n - L| + |y_n - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]
for every \(n > N \).

Next, recalling the triangle inequality, we have
\[
|(x_n + y_n) - (L + L)| \leq |x_n - L| + |y_n - L|,
\]
and thus
\[
|(x_n + y_n) - 2L| < \varepsilon.
\]

We see that \(\lim_{n \to \infty} (x_n + y_n) = 2L \).

Finally, recall the following property of limits of real sequences:
\[
\lim_{n \to \infty} c x_n = c \lim_{n \to \infty} x_n \quad \text{for every } c \in \mathbb{R}.
\]

By applying this property, we have
\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{2} (x_n + y_n) = \frac{1}{2} \lim_{n \to \infty} (x_n + y_n) = \frac{1}{2} \cdot 2L = L,
\]
and we have completed the first part of the proof.

Let us now look at sequence \(b_n \).

This part will be slightly more complicated, since we will need to use an additional result: every convergent sequence is bounded. Let us prove this statement.

We will use \(\{x_n\} \) as an example. Recall that we have \(\lim_{n \to \infty} x_n = L \in \mathbb{R} \), which means that \(\{x_n\} \) is a convergent sequence. According to the definition given above, there exists some \(N_1 \in \mathbb{N} \) such that if \(n > N_1 \) then \(|x_n - L| < \epsilon \), or \(L - \epsilon < x_n < L + \epsilon \).

The set \(\{x_n: 1 \leq n \leq N_1\} \) is finite and therefore bounded: there exist \(m, M \in \mathbb{R} \) such that for all \(n \leq N_1 \), we have \(m < x_n < M \).

Now take \(m' = \min\{L - \epsilon, \ m\} \) and \(M' = \max\{L + \epsilon, M\} \). We now have that for all \(n \in \mathbb{N}, \ m' < x_n < M' \), so the sequence \(\{x_n\} \) is bounded.

We can now proceed to the final part of our proof.

Applying the result above to both \(\{x_n\} \) and \(\{y_n\} \), we can state that there exist \(m', m'', M', M'' \in \mathbb{R} \) such that for all \(n \in \mathbb{N}, \ m' < x_n < M' \) and \(m'' < y_n < M'' \). We now choose \(M = \max\{1, |L|, |m'|, |m''|, |M'|, |M''|\} \).

We can repeat our definition of convergence for \(x_n \) and \(y_n \):

- there exists some \(N_1 \in \mathbb{N} \) such that if \(n > N_1 \) then \(|x_n - L| < \frac{\epsilon}{2M} \);
- there exists some \(N_2 \in \mathbb{N} \) such that if \(n > N_2 \) then \(|y_n - L| < \frac{\epsilon}{2M} \).

Just like for \(a_n \), choose \(N = \max\{N_1, N_2\} \), and both inequalities hold for \(n > N \).

Now let us evaluate \(|x_n y_n - L^2| \).
\[|x_ny_n - L^2| = |x_ny_n - x_nL + x_nL - L^2| = |x_n(y_n - L) + L(x_n - L)| \]

Apply the triangle inequality:
\[|x_n(y_n - L) + L(x_n - L)| \leq \cdots \]

situated on the real line, respectively on the \(y \)-axis. These points are \((2, 0), (0, 2), (-2, 0), (0, -2)\).

Now consider
\[\lim_{n \to \infty} x_n = 2 \]

To find the radius of convergence, we will first need to find the limit superior of the sequence \(\{c_n\} \), where (in our case) \(c_n = \frac{1 + (-1)^n}{\sqrt{n}} \). To do this, note that \(c_{2k} = \frac{1 + 1}{\sqrt{2k}} = \frac{2}{\sqrt{2k}} > 0 \), whereas
\[c_{2k+1} = \frac{1 - 1}{\sqrt{2k+1}} = 0. \]

Thus,
\[\lim_{n \to \infty} \sup_{n \geq 0} \left(\frac{1 + (-1)^n}{\sqrt{n}} \right)^\frac{1}{n} = \lim_{n \to \infty} \left(\frac{1}{\sqrt{2n}} \right)^\frac{1}{n} = \lim_{n \to \infty} \frac{1}{2\sqrt{\sqrt{n}}} = 1. \]

Now note that \(\lim_{n \to \infty} \frac{1}{\sqrt{n}} = \lim_{n \to \infty} e^{\frac{1}{2} \ln n} = e^{\frac{1}{2}} = 1 \) and \(\lim_{n \to \infty} 2^n = 2^0 = 1 \). Therefore,
\[\lim_{n \to \infty} \sup_{n \geq 0} \left(\frac{1 + (-1)^n}{\sqrt{n}} \right)^\frac{1}{n} = 1 \]

Applying the formula for radius of convergence, we have
\[R = \frac{1}{\lim_{n \to \infty} \sup_{n \geq 0} \left(\frac{1 + (-1)^n}{\sqrt{n}} \right)^\frac{1}{n}} = 1. \]

The disk of convergence is \(\Delta_R = \{ z : |z| < 2 \} \).

The last part of the problem is to study the convergence at the points \(z \) on the boundary of that disk situated on the real line, respectively on the \(y \)-axis. These points are \((2, 0), (0, 2), (-2, 0), (0, -2)\).

- \(z_1 = 2 \)
$$\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n} 2^n} = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n}} + \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

Note that the series $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$ diverges, since we know that power series $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges if and only if $p > 1$ and in our case $p = \frac{1}{2} < 1$.

However, $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges, which can be shown by the alternating series test, since the sequence $\left(\frac{1}{\sqrt{n}}\right)$ decreases monotonically and goes to zero in the limit as $n \to \infty$.

Now recall that the sum of a convergent and divergent series diverges. Thus, $\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n} 2^n}$ diverges.

- $z_2 = 2i$

 Recall that $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$, $i^{4k} = 1$ for every $k \in \mathbb{N}$. Therefore,
 $$\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n} 2^n} (2i)^n = \sum_{n=0}^{\infty} \frac{1 + (-1)^{4n+1}}{\sqrt{4n+1}} i - \sum_{n=0}^{\infty} \frac{1 + (-1)^{4n+2}}{\sqrt{4n+2}} - \sum_{n=0}^{\infty} \frac{1 + (-1)^{4n+3}}{\sqrt{4n+3}} i$$
 $$+ \sum_{n=0}^{\infty} \frac{1 + (-1)^{4n}}{\sqrt{4n}} = i \sum_{n=0}^{\infty} \left(\frac{1 - 1}{\sqrt{4n+1}} - \frac{1 - 1}{\sqrt{4n+3}} + \frac{1 + 1}{\sqrt{4n}} - \frac{1 + 1}{\sqrt{4n+2}} \right)$$
 $$+ \sum_{n=0}^{\infty} \frac{1 + (-1)^{4n+2}}{\sqrt{4n+2}}$$

 Now note that $(-1)^{4n} = (-1)^{4n+2} = 1$ and $(-1)^{4n+1} = (-1)^{4n+3} = -1$. Thus, we can further simplify this expression as follows:
 $$\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n} 2^n} (2i)^n = i \sum_{n=0}^{\infty} \left(\frac{1 - 1}{\sqrt{4n+1}} - \frac{1 - 1}{\sqrt{4n+3}} + \frac{1 + 1}{\sqrt{4n}} - \frac{1 + 1}{\sqrt{4n+2}} \right)$$
 $$= \sum_{n=0}^{\infty} \frac{2}{\sqrt{4n} - \sqrt{4n+2}} = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n} - \sqrt{n+2}}$$

 Let us now investigate convergence of this series. We will transform the summand:
 $$\frac{1}{\sqrt{n} - \sqrt{n+2}} = \frac{2}{\sqrt{4n+2} - \sqrt{4n+2} + 2\sqrt{n}} = \frac{1}{\sqrt{n+2} - \sqrt{n+2} + 2\sqrt{n}} = \frac{1}{2\sqrt{n+2}}$$

 We will use the comparison convergence test. Since $\sqrt{n+2} > \sqrt{n}$, we have
 $$\frac{2}{\sqrt{n+2} - \sqrt{n+2} + 2\sqrt{n}} \leq \frac{2}{\sqrt{n} \sqrt{n+2} + 2\sqrt{n}} = \frac{2}{2n \left(2\sqrt{n} + 2\sqrt{n} \right)} = \frac{1}{3n^{\frac{3}{2}}}$$

 Recall again that the power series $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges if and only if $p > 1$; here $p = \frac{3}{2} > 1$, so our series $\sum_{n=0}^{\infty} \frac{1}{3n^{\frac{3}{2}}}$ converges.

 Finally, by applying the comparison convergence test, we see that the initial series $\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n} 2^n} (2i)^n$ also converges.

- $z_3 = -2$
\[
\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n} 2^n} \left(-2\right)^n = \sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n}} - \sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}
\]

This expression is equal to the one we obtained for \(\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n} 2^n} \), and we have already shown that this series diverges above.

- \(z_4 = -2i \)

\[
\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n}} = \sum_{n=0}^{\infty} \left(-1\right)^n \frac{1}{\sqrt{n}}
\]

We will use the same approach as for \(z_2 = 2i \).

\[
\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n}} \left(-i\right)^n = -\sum_{n=0}^{\infty} \frac{1 + (-1)^{4n+1}}{\sqrt{4n+1}} i - \sum_{n=0}^{\infty} \frac{1 + (-1)^{4n+2}}{\sqrt{4n+2}} i + \sum_{n=0}^{\infty} \frac{1 + (-1)^{4n+3}}{\sqrt{4n+3}} i
\]

\[
= -\sum_{n=0}^{\infty} \frac{1 + (-1)^{4n}}{\sqrt{4n}} i + \sum_{n=0}^{\infty} \frac{1 + (-1)^{4n}}{\sqrt{4n}} i
\]

\[
= \sum_{n=0}^{\infty} \frac{1 + (-1)^{4n}}{\sqrt{4n}} i
\]

Problem 3. Let \(f: \mathbb{R} \to \mathbb{R} \) be a continuous function with the property \(\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty \). Prove that such a function attains its minimum.

Solution. Let us first consider what we mean by \(\lim_{x \to +\infty} f(x) = +\infty \): for every \(M > 0 \), there exists some \(n_1 > 0 \) such that for all \(x > n_1 \), we have \(f(x) > M \).

Similarly, \(\lim_{x \to -\infty} f(x) = +\infty \) is equivalent to the statement that for every \(M > 0 \), there exists some \(n_2 > 0 \) such that for all \(x < -n_2 \), \(f(x) > M \).

Therefore, for every \(M > 0 \) we can choose \(n = \max\{n_1, n_2\} \) so that if \(|x| > n \), then \(f(x) > M \). We see that \(f \) does not attain its minimum outside \([-n, n]\).

But \([-n, n]\) is a compact set. Since the function \(f \) is continuous, it attains a minimum on \([-n, n]\) (by the Extreme Value Theorem). Let us denote the point where the minimum is attained as \(x_0 \): \(f(x_0) = \min_{x \in [-n, n]} f(x) \).

Due to the way we chose \(n \), \(f(x) < M \) for all \(x \in [-n, n] \); thus, \(f(x_0) < M \), and we see that \(f(x_0) = \min_{x \in \mathbb{R}} f(x) \). The proof is complete.

Problem 4. Given that \(f: \mathbb{R} \to \mathbb{R} \) is differentiable at 0 and \(f'(0) = 1 \), find

\[
\lim_{x \to 0} \frac{f(x) - f(-x)}{x}.
\]

Give reasons for your answer.

Solution. To find the value of our expression, we will somewhat transform it by adding and subtracting \(f(0) \):

\[
\lim_{x \to 0} \frac{f(x) - f(-x)}{x} = \lim_{x \to 0} \frac{f(x) - f(0) + f(0) - f(-x)}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x} + \lim_{x \to 0} \frac{f(0) - f(-x)}{x}
\]

In the second expression, we can introduce a new variable \(w = -x \):

\[
\lim_{x \to 0} \frac{f(x) - f(0)}{x} + \lim_{x \to 0} \frac{f(0) - f(-x)}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x} + \lim_{w \to 0} \frac{f(w) - f(0)}{w}.
\]
Now recall the definition of the derivative of function f:

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.$$

Thus,

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}.$$

This is exactly the expression we obtained above. So we can write

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} + \lim_{w \to 0} \frac{f(w) - f(0)}{w} = f'(0) + f'(0) = 2 \cdot f'(0).$$

Finally, since we are given $f'(0) = 1$, we can say that

$$\lim_{x \to 0} \frac{f(x) - f(-x)}{x} = 2 \cdot 1 = 2.$$

Answer. $\lim_{x \to 0} \frac{f(x) - f(-x)}{x} = 2.$