Sample: Quantum Mechanics - Quantum Mechanics Problems

2. Particle in a Box.

One knows the solution for a one-dimensional box: $\quad \psi_{n_{1}}(x)=\sqrt{\frac{2}{a}} \sin \left(\pi n_{1} \frac{x}{a}\right)$. In the same way, plugging in the solution into Schrodinger equation in 3D in form $\psi(x, y, z)=\psi(x) \psi(y) \psi(z)$, it is easy to obtain $\quad \psi_{n_{1} n_{2} n_{3}}(x, y, z)=\sqrt{\frac{8}{3 a^{3}}} \sin \left(\frac{\pi n_{1} x}{a}\right) \sin \left(\frac{\pi n_{2} y}{3 a}\right) \sin \left(\frac{\pi n_{3} z}{a}\right) \quad$ - these are the normalized solutions.

Let us find $\langle x\rangle_{n_{1} n_{2} n_{3}}=$

$$
\begin{aligned}
& \frac{8}{3 a^{3}} \int_{0}^{a} x \sin ^{2}\left(\pi \frac{n_{1}}{a} x\right) \int_{0}^{3 a} \sin ^{2}\left(\pi \frac{n_{2}}{3 a} y\right) d y \int_{0}^{a} \sin ^{2}\left(\pi \frac{n_{3}}{a} z\right) d z=\frac{8}{3 a^{3}} \cdot \frac{a}{2} \cdot \frac{3 a}{2} \cdot\left(\frac{-a^{2}}{8 \pi^{2} n_{1}^{2}}\left(-1-2 n_{1}^{2} \pi^{2}+\cos 2 \pi n_{1}\right)\right)= \\
& \frac{2 a^{2} n_{1}^{2} \pi^{2}}{8 \pi^{2} n_{1}^{2}} \cdot \frac{8}{3 a^{3}} \cdot \frac{3 a}{4} \cdot \frac{a}{2}=\frac{a}{4} .
\end{aligned}
$$

In the same way, $\langle y\rangle_{n_{1} n_{2} n_{3}}=$

$$
\begin{aligned}
& \frac{8}{3 a^{3}} \int_{0}^{a} \sin ^{2}\left(\pi \frac{n_{1}}{a} x\right) \int_{0}^{3 a} y \sin ^{2}\left(\pi \frac{n_{2}}{3 a} y\right) d y \int_{0}^{a} \sin ^{2}\left(\pi \frac{n_{3}}{a} z\right) d z=\frac{8}{3 a^{3}} \cdot \frac{a}{2} \cdot \frac{a}{2} \cdot\left(-9 \frac{a^{2}}{8 \pi^{2} n_{2}^{2}}\left(-1-2 n_{2}^{2} \pi^{2}+\cos 2 \pi n_{2}\right)\right)=\frac{3}{2} a \\
& \text { and }<z>_{n_{1} n_{2} n_{3}}= \\
& \frac{8}{3 a^{3}} \int_{0}^{a} \sin ^{2}\left(\pi \frac{n_{1}}{a} x\right) \int_{0}^{3 a} \sin ^{2}\left(\pi \frac{n_{2}}{3 a} y\right) d y \int_{0}^{a} z \sin ^{2}\left(\pi \frac{n_{3}}{a} z\right) d z=\frac{8}{3 a^{3}} \cdot \frac{a}{2} \cdot \frac{3 a}{2} \cdot\left(\frac{2 a^{2} n_{3}^{2} \pi^{2}}{8 \pi^{2} n_{3}^{2}}\right)=\frac{a}{2} .
\end{aligned}
$$

3. Velocity equals velocity

First, let us write Schrodinger equation $i \hbar \frac{\partial \psi}{\partial t}=\frac{-\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi$. $\frac{d}{d t}\langle x\rangle=\int \bar{\psi} x \frac{\partial \psi}{\partial t} d \tau+\int \psi x \frac{\partial \bar{\psi}}{\partial t} d \tau$. Now let us plug in derivatives from Schrodinger equation.
Obtain: $\frac{d}{d t}\langle x\rangle=\frac{i \hbar}{2 m} \int\left[\bar{\psi} x\left(\nabla^{2} \psi\right)-\left(\nabla^{2} \bar{\psi}\right) x \psi\right] d \tau$ (the parts with potential V vanished).
Let us rewrite the last term in $\frac{d}{d t}\langle x\rangle$. First, let us use equality

$$
\nabla(x \psi \nabla \bar{\psi})=\left(\nabla^{2} \bar{\psi}\right) x \psi+(\nabla \bar{\psi}) \nabla(x \psi)
$$

Then, $\int\left(\nabla^{2} \bar{\psi}\right)_{x} \psi d \tau=-\int(\nabla \bar{\psi}) \nabla(x \psi) d \tau+\int \nabla(x \psi \bar{\psi}) d \tau$. The last integral according to divergence theorem is equal to $\int_{S}(x \psi \nabla \bar{\psi}) d \vec{S}$. It vanishes on infinity.
Now, use the given equality one more time for term which left:
$\int\left(\nabla^{2} \bar{\psi}\right) x \psi d \tau=-\int(\nabla \bar{\psi}) \nabla(x \psi) d \tau=\int \bar{\psi} \nabla^{2}(x \psi) d \tau$ (one more time, the term with divergence converted into integral over surface and vanished).
Hence, $\frac{d}{d t}\langle x\rangle=\frac{i \hbar}{2 m} \int \bar{\psi}\left[x \nabla^{2} \psi-\nabla^{2}(x \psi)\right] d \tau$.
The last term is $\nabla^{2}(x \psi)=2 \nabla x \nabla \psi+x \nabla^{2} \psi=2 \frac{\partial \psi}{\partial x}+x \nabla^{2} \psi$. Plugging this into previous equation,
obtain $\frac{d}{d t}\langle x\rangle=\frac{-i \hbar}{m} \int \bar{\psi} \frac{\partial \psi}{\partial x} d \tau=\frac{1}{m}\left\langle p_{x}\right\rangle$, because $\quad p_{x}=-i \hbar \frac{\partial}{\partial x}$.
The average value $\left\langle p_{x}\right\rangle$ is simply $p_{x}=m v_{x}=m v$, so $\frac{d}{d t}\langle x\rangle=v$.

4. Acceleration

One might use equation $\frac{d \hat{f}}{d t}=\frac{1}{i \hbar}[\hat{p}, \hat{H}]$. But according to canonical quantization relations, $[\hat{p}, \hat{H}] \rightarrow-i \hbar\{f, H\}$, where $\{f, g\}=\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial g}{\partial p_{k}}-\frac{\partial g}{\partial q_{k}} \frac{\partial f}{\partial p_{k}}$.
a) Poisson bracket $\left\{p_{x}, H\right\}=0$, hence acceleration is zero.
b) Poisson bracket is $\left\{p_{x}, H\right\}=-c$, so $\frac{d}{d t} \hat{p}=c$ and $a=\frac{c}{m}$.
c) Poisson bracket is $\left\{p_{x}, H\right\}=-m w^{2} x$, so $\frac{d}{d t} \hat{p}=m w^{2} x$ and $a=w^{2} x$.

