Sample: Trigonometry - Properties of Trigonometric Functions

1 Math Homework.

Complete your assignment and submit it to your instructor. Fill in the following table for f(x) = cos(x) (each blank in the table is worth 1 point):

Х	-2π	-3π/2	- π	- π/2	0	π/2	π	3π/2	2 π
cos(x)	1	0	-1	0	1	0	-1	0	1

Graph the two periods of the cosine function from the table (graph is worth 9 points):

Fill in the following properties of the graph of the cosine function. To receive full credit for each question, you must explain your answer (each problem is worth 2 points):

1. Domain of $f(x) = \cos(x)$.

Domain of $f(x)=\cos(x)$ is $(-\infty,\infty)$, because argument x can take on any real value.

2. Range of $f(x) = \cos(x)$.

Range f(x)=cos(x) is [-1,1], because cos(x) always less or equal then 1 and greater or equal then -1.

3. Period of $f(x) = \cos(x)$.

Period of f(x)=cos(x) is 2π , because 2π is the smallest value p for which cos(x + p) = cos(x) for all x.

4. The x-intercepts of $f(x) = \cos(x)$.

The x-intercepts of $f(x) = \cos(x)$ are $x = \frac{\pi}{2} + \pi n$ where n is an integer (positive or negative), because $\cos(\frac{\pi}{2} + \pi n) = 0$.

5. The y-intercept of $f(x) = \cos(x)$.

The y-intercept of $f(x) = \cos(x)$ is 1 because $\cos(0)=1$. 6. Max and Min Values of $f(x) = \cos(x)$ Max Value of $f(x) = \cos(x)$ is 1. Min Value of $f(x) = \cos(x)$ is -1 because $\cos(x)$ is less or equal then 1 and greater or equal then -1 for all x.

2 Math Homework.

Complete your assignment and submit it to your instructor. Fill in the following table for $f(x) = \cot(x)$ (each blank in the table is worth 1 point):

X	$-\pi$	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
cot(x)	-∞, ∞	1	0	-1	-®, 8	1	0	-1	-∞, ∞	1	0	-1	-∞, 8

Graph the three periods of the cotangent function from the table (graph is worth 10 points):

Fill in the following properties of the graph of the cotangent function. To receive full credit on each question, you must explain your answer (each problem is worth 2 points):

1. Domain of $f(x) = \cot(x)$.

Domain of f(x)=cot(x): { $x \in R: \pi n < x < \pi(n+1)$ and $n \in Z(integer)$ }, because cot(x) is undefined for $x=\pi n$

Range of f(x) = cot(x).
Range of f(x) = cot(x) is all real numbers

3. Period of $f(x) = \cot(x)$. Period of $f(x)=\cot(x)$ is π , because π is the smallest value p for which $\cot(x + p) = \cot(x)$ for all x.

4. The x-intercepts of $f(x) = \cot(x)$. The x-intercepts of $f(x) = \cot(x)$ are $x = \frac{\pi}{2} + \pi n$ where n is an integer (positive or negative), because $\cot(\frac{\pi}{2} + \pi n) = 0$.

- 5. The y-intercept of $f(x) = \cot(x)$. The y-intercept of $f(x) = \cot(x)$ does not exist.
- 6. Asymptotes of $f(x) = \cot(x)$. Vertical asymptotes of $f(x) = \cot(x)$ are $x = \pi n$ (where n is integer).

3 Math Homework.

Make sure to show all your work.

 $f(x) = 2\sin(\frac{2}{3}x)$ 1. Graph function. Find the amplitude and period of the

The amplitude of function $f(x) = \sin(x)$ equals 1 so in our case amplitude of function $f(x) = 2\sin(2x/3)$ equals 2.

Period of function $f(x) = \sin(x)$ equals 2π so in our case period of function $f(x) = 2\sin(2x/3)$ equals $\frac{2\pi}{\frac{2}{2}} = 3\pi$

The amplitude of function f(x) = cos(x) equals 1 so in our case amplitude of function f(x) = -1/3cos(4x) equals 1/3. Period of function f(x) = cos(x) equals 2π so in our case period of function f(x) = -1/3cos(4x) equals $\frac{2\pi}{4} = \frac{\pi}{2}$

(in Word):

The amplitude of function $f(x) = \tan(x)$ equals ∞ so in our case amplitude of function $f(x) = \tan(\frac{x}{2})$ equals ∞ .

Period of function $f(x) = \tan(x)$ equals π so in our case period of function $f(x) = tan(\frac{x}{2})$ equals $\frac{\pi}{\frac{1}{2}} = 2\pi$

4. Write the equation of the sine function with an amplitude of 9 and a period of 3π .

As we know the amplitude *A* and period *P* of the function f(x) = asin(kx) equals:

A=1* | a |= | a | P=2π/k

So in our case a=1/9, $k = 2\pi/P = 2\pi/3\pi = 2/3$ and the equation of sine function is $f(x) = \frac{1}{9}\sin(\frac{2}{3}x)$

5. Write the equation of the cosine function with an amplitude of 2 and 3π

period of 5

As we know the amplitude A and period P of the function $f(x) = a\cos(kx)$ equals:

A=1* | a |= | a | P=2π/k

So in our case a=2, $k = \frac{2\pi}{P} = \frac{2\pi}{\frac{3\pi}{5}} = \frac{10}{3}$ and the equation of sine function is $f(x) = 2\cos(\frac{10}{3}x)$