Sample: Trigonometry - Properties of Trigonometric Functions

1 Math Homework.

Complete your assignment and submit it to your instructor.
Fill in the following table for $f(x)=\cos (x)$ (each blank in the table is worth 1 point):

x	-2π	$-3 \pi / 2$	$-\pi$	$-\pi / 2$	0	$\pi / 2$	π	$3 \pi / 2$	2π
$\cos (x)$	1	0	-1	0	1	0	-1	0	1

Graph the two periods of the cosine function from the table (graph is worth 9 points):

Fill in the following properties of the graph of the cosine function. To receive full credit for each question, you must explain your answer (each problem is worth 2 points):

1. Domain of $f(x)=\cos (x)$.

Domain of $f(x)=\cos (x)$ is $(-\infty, \infty)$, because argument x can take on any real value.
2. Range of $f(x)=\cos (x)$.

Range $f(x)=\cos (x)$ is $[-1,1]$, because $\cos (x)$ always less or equal then 1 and greater or equal then -1 .
3. Period of $f(x)=\cos (x)$.

Period of $f(x)=\cos (x)$ is 2π, because 2π is the smallest value p for which $\cos (x+p)=\cos (x)$ for all x .
4. The x-intercepts of $f(x)=\cos (x)$.

The x -intercepts of $f(x)=\cos (x)$ are $x=\frac{\pi}{2}+\pi n$ where n is an integer (positive or negative), because $\cos \left(\frac{\pi}{2}+\pi n\right)=0$.
5. The y-intercept of $f(x)=\cos (x)$.

The y-intercept of $f(x)=\cos (x)$ is 1 because $\cos (0)=1$.
6. Max and Min Values of $f(x)=\cos (x)$

Max Value of $f(x)=\cos (x)$ is 1 .
Min Value of $f(x)=\cos (x)$ is -1
because $\cos (x)$ is less or equal then 1 and greater or equal then -1 for all x.

2 Math Homework.

Complete your assignment and submit it to your instructor. Fill in the following table for $f(x)=\cot (x)$ (each blank in the table is worth 1 point):

x	$-\pi$	$-\frac{3 \pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$\cot (\mathrm{x})$	$-\infty$, ∞	1	0	-1	$-\infty$, ∞	1	0	-1	$-\infty$, ∞	1	0	-1	$-\infty$, ∞

Graph the three periods of the cotangent function from the table (graph is worth 10 points):

Fill in the following properties of the graph of the cotangent function. To receive full credit on each question, you must explain your answer (each problem is worth 2 points):

1. Domain of $f(x)=\cot (x)$.

Domain of $f(x)=\cot (x):\{x \in R: \pi n<x<\pi(n+1)$ and $n \in$
Z (integer) $\}$, because $\cot (x)$ is undefined for $x=\pi n$
2. Range of $f(x)=\cot (x)$.

Range of $f(x)=\cot (x)$ is all real numbers
3. Period of $f(x)=\cot (x)$.

Period of $f(x)=\cot (x)$ is π, because π is the smallest value p for which $\cot (x+p)=\cot (x)$ for all x .
4. The x-intercepts of $f(x)=\cot (x)$.

The x-intercepts of $f(x)=\cot (x)$ are $x=\frac{\pi}{2}+\pi n$ where n is an integer (positive or negative), because $\cot \left(\frac{\pi}{2}+\pi n\right)=0$.
5. The y-intercept of $f(x)=\cot (x)$.

The y-intercept of $f(x)=\cot (x)$ does not exist.
6. Asymptotes of $f(x)=\cot (x)$.

Vertical asymptotes of $f(x)=\cot (x)$ are $x=\pi n$ (where n is integer).

3 Math Homework.

Make sure to show all your work.

$$
f(x)=2 \sin \left(\frac{2}{3} x\right)
$$

. Find the amplitude and period of the

1. Graph function.

$$
y=2 \sin (2 x / 3)
$$

(Or in Word):

The amplitude of function $f(x)=\sin (x)$ equals 1 so in our case amplitude of function $f(x)=2 \sin (2 x / 3)$ equals 2 .

Period of function $f(x)=\sin (x)$ equals 2π so in our case period of function $f(x)=2 \sin (2 x / 3)$ equals $\frac{2 \pi}{\frac{2}{3}}=3 \pi$

(Or in Word):

The amplitude of function $f(x)=\cos (x)$ equals 1 so in our case amplitude of function $f(x)=-1 / 3 \cos (4 x)$ equals $1 / 3$.
Period of function $f(x)=\cos (x)$ equals 2π so in our case period of function $f(x)=-1 / 3 \cos (4 x)$ equals $\frac{2 \pi}{4}=\frac{\pi}{2}$
3. Graph $f(x)=\tan \left(\frac{1}{2} x\right)$
. Find the amplitude and period of the function.

(in Word):

The amplitude of function $f(x)=\tan (x)$ equals ∞ so in our case amplitude of function $f(x)=\tan \left(\frac{x}{2}\right)$ equals ∞.
Period of function $f(x)=\tan (x)$ equals π so in our case period of function $f(x)=\tan \left(\frac{x}{2}\right)$ equals $\frac{\pi}{\frac{1}{2}}=2 \pi$
4. Write the equation of the sine function with an amplitude of $\overline{9}$ and a period of 3π.
As we know the amplitude A and period P of the function $f(x)=\operatorname{asin}(k x)$ equals:

$$
\begin{aligned}
& A=1^{*}|a|=|a| \\
& P=2 \pi / k
\end{aligned}
$$

So in our case $\mathrm{a}=1 / 9, k=2 \pi / P=2 \pi / 3 \pi=2 / 3$ and the equation of sine function is $f(x)=\frac{1}{9} \sin \left(\frac{2}{3} x\right)$
5. Write the equation of the cosine function with an amplitude of 2 and
period of $\frac{3 \pi}{5}$.
As we know the amplitude A and period P of the function $f(x)=$ $\operatorname{acos}(k x)$ equals:
$\mathrm{A}=$ 1* $^{*}|\mathrm{a}|=|\mathrm{a}|$
$\mathrm{P}=2 \pi / k$
So in our case $\mathrm{a}=2, k=\frac{2 \pi}{P}=\frac{2 \pi}{\frac{3 \pi}{5}}=\frac{10}{3}$ and the equation of sine function is $f(x)=2 \cos \left(\frac{10}{3} x\right)$

