Sample: Trigonometry - Properties of Trigonometric Functions

1 Math Homework.

Complete your assignment and submit it to your instructor. Fill in the following table for \(f(x) = \cos(x) \) (each blank in the table is worth 1 point):

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2(\pi)</th>
<th>-3(\pi/2)</th>
<th>-(\pi)</th>
<th>-(\pi/2)</th>
<th>0</th>
<th>(\pi/2)</th>
<th>(\pi)</th>
<th>3(\pi/2)</th>
<th>2 (\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cos(x))</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Graph the two periods of the cosine function from the table (graph is worth 9 points):

[Graph of cosine function]

Fill in the following properties of the graph of the cosine function. To receive full credit for each question, you must explain your answer (each problem is worth 2 points):

1. Domain of \(f(x) = \cos(x) \).
 Domain of \(f(x)=\cos(x) \) is \((-\infty, \infty) \), because argument \(x \) can take on any real value.

2. Range of \(f(x) = \cos(x) \).
 Range \(f(x)=\cos(x) \) is \([-1,1]\), because \(\cos(x) \) always less or equal then 1 and greater or equal then -1.

3. Period of \(f(x) = \cos(x) \).
 Period of \(f(x)=\cos(x) \) is \(2\pi \), because \(2\pi \) is the smallest value \(p \) for which \(\cos(x + p) = \cos(x) \) for all \(x \).

4. The x-intercepts of \(f(x) = \cos(x) \).
 The x-intercepts of \(f(x) = \cos(x) \) are \(x = \frac{\pi}{2} + \pi n \) where \(n \) is an integer (positive or negative), because \(\cos(\frac{\pi}{2} + \pi n) = 0 \).

5. The y-intercept of \(f(x) = \cos(x) \).
The y-intercept of \(f(x) = \cos(x) \) is 1 because \(\cos(0) = 1 \).

6. Max and Min Values of \(f(x) = \cos(x) \)
 Max Value of \(f(x) = \cos(x) \) is 1.
 Min Value of \(f(x) = \cos(x) \) is -1
 because \(\cos(x) \) is less or equal then 1 and greater or equal then -1 for all \(x \).

2 Math Homework.

Complete your assignment and submit it to your instructor. Fill in the following table for \(f(x) = \cot(x) \) (each blank in the table is worth 1 point):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\pi)</th>
<th>(-\frac{3\pi}{4})</th>
<th>(-\frac{\pi}{2})</th>
<th>(-\frac{\pi}{4})</th>
<th>0</th>
<th>(\frac{\pi}{4})</th>
<th>(\frac{\pi}{2})</th>
<th>(\frac{3\pi}{4})</th>
<th>(\pi)</th>
<th>(\frac{5\pi}{4})</th>
<th>(\frac{3\pi}{2})</th>
<th>(\frac{7\pi}{4})</th>
<th>(2\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cot(x))</td>
<td>(\infty)</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>(-\infty)</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>(-\infty)</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>(-\infty)</td>
</tr>
</tbody>
</table>

Graph the three periods of the cotangent function from the table (graph is worth 10 points):
Fill in the following properties of the graph of the cotangent function. To receive full credit on each question, you must explain your answer (each problem is worth 2 points):

1. Domain of \(f(x) = \cot(x) \).
 Domain of \(f(x) = \cot(x) \): \(\{ x \in \mathbb{R} : \pi n < x < \pi (n + 1) \text{ and } n \in \mathbb{Z} (\text{integer}) \} \), because \(\cot(x) \) is undefined for \(x = \pi n \).

2. Range of \(f(x) = \cot(x) \).
 Range of \(f(x) = \cot(x) \) is all real numbers.

3. Period of \(f(x) = \cot(x) \).
 Period of \(f(x) = \cot(x) \) is \(\pi \), because \(\pi \) is the smallest value \(p \) for which \(\cot(x + p) = \cot(x) \) for all \(x \).

4. The x-intercepts of \(f(x) = \cot(x) \).
 The x-intercepts of \(f(x) = \cot(x) \) are \(x = \frac{\pi}{2} + \pi n \) where \(n \) is an integer (positive or negative), because \(\cot(\frac{\pi}{2} + \pi n) = 0 \).

5. The y-intercept of \(f(x) = \cot(x) \).
 The y-intercept of \(f(x) = \cot(x) \) does not exist.

6. Asymptotes of \(f(x) = \cot(x) \).
 Vertical asymptotes of \(f(x) = \cot(x) \) are \(x = \pi n \) (where \(n \) is integer).
3 Math Homework.

Make sure to show all your work.

\[f(x) = 2 \sin \left(\frac{2}{3} x \right) \]

1. Graph \(y = 2 \sin \left(\frac{2}{3} x \right) \). Find the amplitude and period of the function.

The amplitude of function \(f(x) = \sin(x) \) equals 1 so in our case amplitude of function \(f(x) = 2\sin(2x/3) \) equals 2.
Period of function $f(x) = \sin(x)$ equals 2π so in our case period of function $f(x) = 2\sin(2x/3)$ equals $\frac{2\pi}{\frac{2}{3}} = 3\pi$

$$f(x) = -\frac{1}{3}\cos(4x)$$

2. Graph $y = -\frac{1}{3}\cos(4x)$. Find the amplitude and period of the function.
The amplitude of function \(f(x) = \cos(x) \) equals 1 so in our case amplitude of function \(f(x) = -\frac{1}{3}\cos(4x) \) equals \(\frac{1}{3} \).

Period of function \(f(x) = \cos(x) \) equals \(2\pi \) so in our case period of function \(f(x) = -\frac{1}{3}\cos(4x) \) equals \(\frac{2\pi}{4} = \frac{\pi}{2} \).

\[f(x) = \tan\left(\frac{1}{2}x\right) \]

3. Graph \(y = \tan(x/2) \). Find the amplitude and period of the function.
The amplitude of function \(f(x) = \tan(x) \) equals \(\infty \) so in our case amplitude of function \(f(x) = \tan\left(\frac{x}{2}\right) \) equals \(\infty \).

Period of function \(f(x) = \tan(x) \) equals \(\pi \) so in our case period of function \(f(x) = \tan\left(\frac{x}{2}\right) \) equals \(\frac{\pi}{\frac{1}{2}} = 2\pi \)

4. Write the equation of the sine function with an amplitude of \(\frac{1}{9} \) and a period of \(\frac{3\pi}{5} \).

As we know the amplitude \(A \) and period \(P \) of the function \(f(x) = \sin(\frac{1}{2}x) \) equals:

\[
A = 1 \times |a| = |a| \\
P = \frac{2\pi}{k}
\]

So in our case \(a = 1/9 \), \(k = \frac{2\pi}{3\pi} = \frac{2}{3} \) and the equation of sine function is

\[f(x) = \frac{1}{9} \sin\left(\frac{2}{3}x\right) \]

5. Write the equation of the cosine function with an amplitude of 2 and period of \(\frac{3\pi}{5} \).

As we know the amplitude \(A \) and period \(P \) of the function \(f(x) = \cos(kx) \) equals:

\[
A = 1 \times |a| = |a| \\
P = \frac{2\pi}{k}
\]

So in our case \(a = 2 \), \(k = \frac{2\pi}{\frac{3\pi}{5}} = \frac{10}{3} \) and the equation of sine function is

\[f(x) = 2\cos\left(\frac{10}{3}x\right) \]