Sample: Discrete Mathematics - Properties of Relations

Task 1. Suppose we are given set $A=\{1,2,3,4,6,12\}$ and a relation, R, from $A \times A$. The relation is defined as follows:

$$
R=\{(a, b) \mid \text { a divides } \mathrm{b}, \text { where }(\mathrm{a}, \mathrm{~b}) \text { belongs to } A \times A\}
$$

a) List all the ordered pairs (a, b) that are elements of the relation.
b) Use the results from part a) to construct the corresponding zero-one matrix.

Solution. a) Relation R consists of the following pairs:

$$
\begin{gathered}
(1,1),(1,2),(1,3),(1,4),(1,6),(1,12), \\
(2,2),(2,4),(2,6),(2,12), \quad(3,3),(3,6),(3,12) \\
(4,4),(4,12), \quad(6,6),(6,12), \quad(12,12)
\end{gathered}
$$

b) The matrix representing this relation has the following form:

	1	2	3	4	6	12
1	1	1	1	1	1	1
2	0	1	0	1	1	1
3	0	0	1	0	1	1
4	0	0	0	1	0	1
6	0	0	0	0	1	1
12	0	0	0	0	0	1

Task 2. Let R be the relation on the set of all people who have visited a particular Web page such that $x R y$ if and only if person x and person y have followed the same set of links starting at this Web page (going from Web page to Web page until they stop using the Web). Show that R is an equivalence relation (i.e. it is reflexive, symmetric, and transitive).

Solution.

1) R is reflexive, that is $x R x$ for all persons x.

Indeed, x and x have followed the same set of links starting at this Web page.
2) $\quad R$ is symmetric, that is $x R y$ then $y R x$.

Indeed if x and y have followed the same set of links starting at this Web page, then y and z have followed the same set of links starting at this Web page.
3) R is transitive, that is if $x R y$ and $y R z$ then $x R z$.

Indeed if x and y have followed the same set of links starting at this Web page, and y and z have followed the same set of links starting at this Web page, then x and z also have followed the same set of links starting at this Web page.

Task 3. For the relation R on the set $A=\{1,2,3,4\}$ given below, deteremine whether it is reflexive, symmetric, anti-symmetric and transitive.

$$
R=\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}
$$

Solution.

1) R is not reflexive, since $(1,1) \notin R$.
2) R is not symmetric, since $(2,3) \in R$ but $(3,2) \notin R$.
3) R is not anti-symmetric, since both $(1,3)$ and $(3,1)$ belong to R.
4) R is not transitive, since $(1,3),(3,1) \in R$ but $(1,1) \notin R$.

Task 4 . List the ordered pairs in the relation R from $A=\{0,1,2,3,4\}$ to $B=\{0,1,2,3\}$, where $(a, b) \in R$ if and only if $a+b=4$.
Solution. The relation R consists of the following pairs:

$$
(1,3),(2,2),(3,1),(4,0)
$$

Task 5. A department manager has 4 employees involved with 6 projects throughout the fiscal year. In how many ways can the manager assign these projects so that each employee is working on at least one project?
Solution. Let $P=\{1,2,3,4,5,6\}$ be the set of all projects. Each assignment is a partition of P into 4 non-empty subsets.
Therefore we should compute the number of partitions of P into ordered family of 4 non-empty subsets $A_{1}, A_{2}, A_{3}, A_{4}$.
Since every A_{i} is non-empty then there possible two distinct cases:
Case 1). One of these sets consists of 3 elements, and each of other three sets consists of a unique element, e.g.

$$
A_{1}=\{1,2,3\}, \quad A_{2}=\{4\}, \quad A_{3}=\{5\}, \quad A_{4}=\{6\}
$$

Each such partition is determined by three one-element sets, i.e. by choice of ordered 3-tuple from P, and then by 4 positions of the set of remained three elements of P.
Then the number of partitions in this case is equal to

$$
6 * 5 * 4 * 4=480
$$

Case 2). Two sets are two-elements and other two sets are one-elements, e.g.

$$
A_{1}=\{1,2\}, \quad A_{2}=\{3,4\}, \quad A_{3}=\{5\}, \quad A_{4}=\{6\} .
$$

First let us compute the number of partitions of P into sets of 1, 1, 2 and 2 elements. Indeed, the first 1 -elements set can be chosen from 6 elements. To each choice of that elemetns set correspond 5 choices of the second 1-elements set. Then third 2-elements set is chosen from the remained 4 elements, so we can choose that set into $C_{4}^{2}=\frac{4!}{2!*(4-2)!}=6$ ways. The fourth 2-elements set is then also determined. Hence the number partitions of P into sets of $1,1,2$ and 2 elements is equal to

$$
6 * 5 * C_{4}^{2}=6 * 5 * 6=180
$$

Now we should take compute the number of distinct "words" obtained by permutations of 1122 . This number is equal to the number of choices of two elements (say 1 's) from 4 -elements set, and so it is 6 .
Hence the total number of functions in the case 2 is

$$
180 * 6=1080
$$

Therefore the total number of all ways that the manager can assign these projects so that each employee is working on at least one project is equal to

$$
480+1080=1560
$$

Task 6. A survey of households in the U.S. reveals that 96% have at least one television set, 98% have cell phone service and 95\% have a cell phone and at least one television set. What percentage of households in the U.S. has neither cell phone nor a television set?
Solution. Let H be the set of all households, T be the set of all households having at least one television set, and C is the set of all households having cell phone service. For a subset $A \subset X$ denote by $|A|$ the number of elements in A. Then by assumption

$$
|T|=0.96|X|, \quad|C|=0.98|X|, \quad|T \cap C|=0.95|X|
$$

We should find the percentage of the set

$$
X \backslash(T \cup C)
$$

in X.
Notice that

$$
C \backslash T=C \backslash(T \cap C)=|C|-|T \cap C|=(0.98-0.95)|X|=0.03|X|
$$

Thus the number of households having cell phone service but not television set constitutes 3% over all households.
Hence

$$
T \cup C=T \cup(C \backslash T)=(0.96+0.03)|X|=0.99|X|
$$

so the number of households having at least one television set or cell phone service constitute 99\% over all households.
Therefore percentage of households in the U.S. has neither cell phone nor a television set is

$$
100-99=1 \%
$$

Task 7. Let $A=\{a, b, c, d\}$ and $B=\{1,2,3,4\}$.
a) How many functions $f: A \rightarrow B$ are there?
b) How many functions $f: A \rightarrow B$ satisfy $f(a)=2$?

Solution. a) Notice that a function $f: A \rightarrow B$ can associate to each of 4 elements A one of the 4 elements of B. To each of 4 choices of $a \mapsto f(a)$, correspond 4 choices of $b \mapsto f(b)$, so we get $4 * 4=4^{2}$ choices of values for a and b.
To each choice of $(f(a), f(b))$ correspond 4 choices of $f(c)$, so we get $4 * 4 * 4=4^{3}$ choices of values for a, b, and c.
Similarly, there are 4^{4} choices of values $f(a), f(b), f(c), f(d)$. Thus the number of functions $f: A \rightarrow B$ is equal to $4^{4}=256$.
b) A function $f: A \rightarrow B$ satisfying $f(a)=2$, is uniquely determined by its values at points b, c, d. In other words, the number of functions $f: A \rightarrow B$ with $f(a)=2$ is equal to the number of functions $g:\{b, c, d\} \rightarrow B$. Similarly to a) the number of such functions $g:\{b, c, d\} \rightarrow B$ is equal to $4^{3}=64$.

Task 8. Use mathematical induction to prove the following proposition:

$$
P(n): 3+5+7+\cdots+2 n+1=n(2+n)
$$

where $n=1,2,3, \ldots$
Proof. Let $n=1$. Then

$$
P(1)=3,
$$

and

$$
n(2+n)=1 *(2+1)=3=P(1) .
$$

Suppose that we proved that

$$
3+5+7+\cdots+2 k+1=k(2+k)
$$

for all $k \leq n$. Let us prove this for $k=n+1$, that is

$$
P(n): 3+5+7+\cdots+2(n+1)+1=(n+1)(2+n+1)=(n+1)(n+3)=n^{2}+4 n+3 .
$$

We have that

$$
\begin{aligned}
& P(n+1)=3+5+7+\cdots+2 n+1+2(n+1)+1 \\
& \quad=(3+5+7+\cdots+2 n+1)+2(n+1)+1 \\
& \quad=n(2+n)+2(n+1)+1 \\
& \quad=2 n+n^{2}+2 n+2+1 \\
& \quad=n^{2}+4 n+3
\end{aligned}
$$

Now by induction relation

$$
P(n): 3+5+7+\cdots+2 n+1=n(2+n)
$$

holds for all $n \geq 1$.

Task 9. Express the greatest common divisor of the following pair of integers as a linear combination of the integers:

117, 213
Solution. First we find prime decompositions of 117 and 213:

$$
\begin{aligned}
& 117=3 * 39=3 * 3 * 13=3^{2} * 13 \\
& 213=3 * 71
\end{aligned}
$$

Thus

$$
\operatorname{GCD}(117,213)=3
$$

We should find numbers p and q such that

$$
117 p+213 q=3
$$

Contracting by 3 we obtain

$$
39 p+71 q=1
$$

Notice that this identity modulo 39 and 71 means that

$$
71 q \equiv 1 \bmod 39, \quad 39 p \equiv 1 \bmod 71
$$

Let $\phi(m)$ be the Euler function which is equal to the number of numbers a such that $1 \leq a<$ m and $\operatorname{GCD}(a, m)=1$. Then by Euler theorem if $G C D(b, m)=1$, then

$$
b^{\phi(m)} \equiv 1 \bmod m
$$

It is known that

$$
\phi(p)=p-1
$$

for any prime p, and if $\operatorname{GCD}(a, b)=1$, then

$$
\phi(a * b)=\phi(a) * \phi(b)
$$

Hence

$$
\phi(71)=71-1=70
$$

and

$$
\phi(39)=\phi(3 * 13)=\phi(3) * \phi(13)=(3-1) *(13-1)=2 * 12=24
$$

Since $\operatorname{GCD}(71,39)=1$, it follows from Euler theorem that

$$
\begin{aligned}
& 71^{\phi(39)}=71^{24}=1 \bmod 39 \\
& 39^{\phi(71)}=39^{70}=1 \bmod 71
\end{aligned}
$$

Thus for solving equations

$$
71 q \equiv 1 \bmod 39, \quad 39 p \equiv 1 \bmod 71
$$

we can put

$$
\begin{aligned}
& q=71^{24-1}=71^{23} \bmod 39 \\
& p=39^{70-1}=39^{69} \bmod 71
\end{aligned}
$$

Then

$$
71 q=71 * 71^{23}=71^{24}=1 \bmod 39
$$

and similarly,

$$
39 p=39 * 39^{69}=39^{70}=1 \bmod 71
$$

Let us compute $71^{23} \bmod 39$:

$$
\begin{aligned}
q & =71^{23} \equiv(2 * 39-7)^{23} \equiv(-7)^{23} \equiv-7 *\left(7^{2}\right)^{11} \equiv-7 * 49^{11} \\
\equiv & -7 *(39+10)^{11} \equiv-7 * 10^{11}=-7 * 10 * 100^{5}=-70 * 100^{5} \\
= & -(2 * 39-8) *(3 * 39-17)^{5} \equiv-8 * 17^{5}=-8 * 17 *\left(17^{2}\right)^{2}=-136 * 289^{2} \\
= & -(3 * 39+19) *(7 * 39+16)^{2} \equiv-19 * 16 * 2=-19 * 256 \\
= & -19 *(39 * 6+22) \equiv-19 * 22 \\
= & -418=-418+39 * 11=11 \bmod 39
\end{aligned}
$$

Then

$$
71 q=71 * 11=781=1+20 * 39 \equiv 1 \bmod 39
$$

Hence

$$
71 * 11-39 * 20=1
$$

Multiplying by 3 both parts of this identity we obtain:

$$
213 * 11-117 * 20=3
$$

which gives the required expression of $G C D(117,213)=3$ as a linear combination of 117 and 213.

