Sample: Atomic Physics - Physics Assignment

1. 2) A) Upper-bound modulus

We can use the rule of mixtures.
In general, for some material property E (often the elastic modulus), the rule of mixtures states that the overall property in the direction parallel to the fibers may be as high as
$E=f E_{f}+(1-f) E_{M}$,
Where the
$f=\frac{V_{f}}{V_{f}+V_{m}}$ is the fraction of fiber,
$E_{f}=355 G P a$ is the Young modulus of fiber
$E_{m}=2 G P a$ is the Young modulus of matrix.
Whence, we get $f=\frac{E-E_{M}}{E_{f}-E_{M}}=\frac{85 G P a-2 G P a}{355 G P a-2 G P a}=0.235=23.5 \%$
B) Here we use such assumption: composite material load parallel to the fibers
2) The lower-bound modulus

In this case $E=\left(\frac{f}{E_{f}}+\frac{1-f}{E_{m}}\right)^{-1}$
Whence, we get
$\left(\frac{f}{E_{f}}-\frac{f}{E_{m}}\right)=\frac{1}{E}-\frac{1}{E_{m}}$
$f=\left(\frac{1}{E}-\frac{1}{E_{m}}\right)\left(\frac{1}{E_{f}}-\frac{1}{E_{m}}\right)^{-1}=\frac{E-E_{m}}{E_{f}-E_{m}} \frac{E_{f}}{E}$
$f=\frac{E-E_{m}}{E_{f}-E_{m}} \frac{E_{f}}{E}$
$f=\frac{(85-2) G P a}{(355-2) G P a} \frac{355 G P a}{85 G P a}=0.982=98.2 \%$
Here we use such assumption: composite material load perpendicular to the fibers

Answer:

In case of upper-bound modulus we have the minimum volume fraction of fibers $f=23.5 \%$
2. Using the definition of elastic modulus we get that the
$l^{\prime}=l+\Delta l=401 \mathrm{~mm}$
$l=400 \mathrm{~mm}$
$d=12 \mathrm{~mm}$
$b=25 \mathrm{~mm}$
$S=d \times b=12 \mathrm{~mm} \times 25 \mathrm{~mm}=300 \mathrm{~mm}^{2}$
$\Delta l=l^{\prime}-l=401 \mathrm{~mm}-400 \mathrm{~mm}=1 \mathrm{~mm}$
$E=72 G P a$
$E=\frac{F l}{S \Delta l} \Rightarrow$
$F=\frac{E S \Delta l}{l}=\frac{7.2 \cdot 10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \cdot 10^{-3} \mathrm{~m} \cdot 300 \cdot 10^{-6} \mathrm{~m}^{2}}{0.4 \mathrm{~m}}=54 \mathrm{kN}$
3. We get from the figure that if the vectors have the coordinates (in terms of unit of cubic cell)
$A=\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)$
$B=\left(\begin{array}{lll}0 & \frac{1}{2} & \frac{1}{2}\end{array}\right)$
$C=\left(\begin{array}{lll}0 & -\frac{1}{2} & -1\end{array}\right)$
$D=\left(\begin{array}{lll}\frac{1}{2} & -1 & \frac{1}{2}\end{array}\right)$
Reducing to integers we get
$A=\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)$
$B=\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)$
$C=\left(\begin{array}{lll}0 & -1 & -2\end{array}\right)$
$D=\left(\begin{array}{lll}1 & -2 & 1\end{array}\right)$

In traditional in crystallography notation we get
$A=\left(\begin{array}{lll}\overline{1} & 1 & 0\end{array}\right)$
$B=\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)$
$C=\left(\begin{array}{lll}0 & \overline{1} & \overline{2}\end{array}\right)$
$D=\left(\begin{array}{lll}1 & \overline{2} & 1\end{array}\right)$

4. We get from the definition of Miller indices (please see, for example http://en.wikipedia.org/wiki/Miller index)

1) Plane A intercepts the x-axis in point $1 / 2$, the y-axis in point $1, z$-axis in point -1 .

Whence, its Miller indices are $(2,1,-1)$, or, in traditional terms $\left(\begin{array}{lll}2 & 1 & \overline{1}\end{array}\right)$
2) Plane b intercepts the x-axis in point ∞ (it is parallel to x-axis), y-axis in point $1 / 2, z$ axis in point 1.
Whence, its Miller indices are $(0,2,1)$.

5. We get from the method of three point bending flexural test that the

$$
E_{f}=\frac{L^{3} m}{4 b d^{3}}
$$

in these formulas the following parameters are used:

- $E_{f=\text { flexural Modulus of elasticity,(MPa) }}$
- $F=$ load at a given point on the load deflection curve, (N)
- $L=160 \mathrm{~mm}=$ Support span, (mm)
- $b=15 \mathrm{~mm}=$ Width of test beam, (mm)
- $d=5 \mathrm{~mm}=$ Depth of tested beam, (mm)
- $\quad m=$ The gradient (i.e., slope) of the initial straight-line portion of the load deflection

Curve (N / mm)
We know that the $m=\frac{\Delta F}{\Delta \delta}$.
We have the values of force and deflection

Applied Force, F (N)	Measured Deflection, $\boldsymbol{\delta}$ $(\mathbf{m m})$
64.5	0.065
128.5	0.130
193.0	0.195
257.5	0.260
382.5	0.380 (fracture)

Whence, we can find the gradient of the initial straight-line portion of the load deflection

$\Delta \delta \mathrm{mm}$	$\Delta F, N$	$\mathrm{~m}, \mathrm{~N} / \mathrm{mm}$
0.065 mm	64 N	984,6
0.065 mm	64.5 N	992,3
0.065 mm	64.5 N	992,3
0.120	125 N	1041.7

Whence, we can use $\boldsymbol{m}=992.3 \mathrm{~N} / \mathrm{mm}$.
$E_{f}=\frac{L^{3} m}{4 b d^{3}}=\frac{(160 \mathrm{~mm})^{3} 992.3 \mathrm{~N} / \mathrm{mm}}{4 \cdot 15 \mathrm{~mm} \cdot(5 \mathrm{~mm})^{3}}=541930 M P A=541.93 \mathrm{GPa}$
If we use the average value of $\boldsymbol{m}=\mathbf{1 0 0 2 . 7} \mathbf{N} / \mathbf{m m}$
We get $E_{f}=547.61 G P a$
b) From the data of m, we can see that the m is not decreasing. If the material is brittle, the m is decreasing.

Whence, the material is ductile.

