## Sample: Algorithms Quantitative Methods - Math Assignment

## Question \#1

(a) Let take the number of calls in day time is:

| Category | Number of calls in a day time |
| :--- | :--- |
| Married Woman | $x_{11}$ |
| Married Man | $x_{21}$ |
| Single Woman | $x_{31}$ |
| Single Man | $x_{41}$ |

And the number of calls in the evening time is:

| Category | Number of calls in an evening time |
| :--- | :--- |
| Married Woman | $x_{12}$ |
| Married Man | $x_{22}$ |
| Single Woman | $x_{32}$ |
| Single Man | $x_{42}$ |

In this case we know that the total number of the phone calls (we will pay $\$ 1$ per every call) is:

$$
C_{c a l l}=\sum x_{i j}=x_{11}+x_{12}+x_{21}+x_{22}+x_{31}+x_{32}+x_{41}+x_{42}
$$

As we know that only $50 \%$ of calls during a day and $88 \%$ of calls during evening are picked up and only $50 \%$ of the people who answer the calls agree to participate in the survey. For every refuse we should also pay $\$ 1$ and "refused" costs will be:

$$
C_{\text {refissed }}=0.5 \cdot 0.5 \cdot\left(x_{11}+x_{21}+x_{31}+x_{31}\right)+0.5 \cdot 0.88 \cdot\left(x_{12}+x_{22}+x_{32}+x_{42}\right) .
$$

We know that if the person who answers the phone agrees to participate in the survey, it costs $\$ 10$ to complete the survey during day time and $\$ 20$ during evening time (due to the higher labour cost) and only $50 \%$ of the people who answer the calls agree to participate in the survey. In this case the costs for survey will be equal to:

$$
C_{\text {answered }}=10 \cdot 0.5 \cdot 0.5 \cdot\left(x_{11}+x_{21}+x_{31}+x_{31}\right)+20 \cdot 0.5 \cdot 0.88 \cdot\left(x_{12}+x_{22}+x_{32}+x_{42}\right) .
$$

Total costs will be equal:

$$
\begin{aligned}
& C_{\text {calls }}+C_{\text {refised }}+C_{\text {answered }}=x_{11}+x_{12}+x_{21}+x_{22}+x_{31}+x_{32}+x_{41}+x_{42}+0.5 \cdot 0.5 \cdot\left(x_{11}+x_{21}+x_{31}+x_{31}\right)+ \\
& +0.5 \cdot 0.88 \cdot\left(x_{12}+x_{22}+x_{32}+x_{42}\right)+10 \cdot 0.5 \cdot 0.5 \cdot\left(x_{11}+x_{21}+x_{31}+x_{31}\right)+ \\
& +20 \cdot 0.5 \cdot 0.88 \cdot\left(x_{12}+x_{22}+x_{32}+x_{42}\right)= \\
& =3.75 \cdot\left(x_{11}+x_{21}+x_{31}+x_{31}\right)+10.24 \cdot\left(x_{12}+x_{22}+x_{32}+x_{42}\right) .
\end{aligned}
$$

We obtained that the total cost to complete the survey, which we need to minimize is:

$$
C=3.75 \cdot\left(x_{11}+x_{21}+x_{31}+x_{31}\right)+10.24 \cdot\left(x_{12}+x_{22}+x_{32}+x_{42}\right) \rightarrow \min .
$$

Now we will find the constraints:
The project requires responses from:

- At least 120 married women: from this category only $10 \%$ during the day time and $14 \%$ during the evening agrees to participate in the survey:

$$
0.1 \cdot x_{11}+0.14 \cdot x_{12} \geq 120
$$

- At least 150 married men: from this category only $5 \%$ during the day time and $14 \%$ during the evening agrees to participate in the survey: $0.05 \cdot x_{21}+0.14 \cdot x_{22} \geq 150$.
- At least 110 single women: from this category only $5 \%$ during the day time and $8 \%$ during the evening agrees to participate in the survey: $0.05 \cdot x_{31}+0.08 \cdot x_{32} \geq 110$.
- At least 100 single men: from this category only $5 \%$ during the day time and $8 \%$ during the evening agrees to participate in the survey: $0.05 \cdot x_{41}+0.08 \cdot x_{42} \geq 100$.

And we also know that due to the staff hiring policy, at most half of all phone calls can be made during evening, or in other words the evening calls at most a half of all phone calls:

$$
\begin{aligned}
& x_{12}+x_{22}+x_{32}+x_{42} \leq \frac{1}{2}\left(x_{11}+x_{12}+x_{21}+x_{22}+x_{31}+x_{32}+x_{41}+x_{42}\right) \Leftrightarrow \\
& \Leftrightarrow \frac{1}{2}\left(x_{11}-x_{12}+x_{21}-x_{22}+x_{31}-x_{32}+x_{41}-x_{42}\right) \geq 0 .
\end{aligned}
$$

Linear programming problem:
The objective function (we should minimized the cost):

$$
C=3.75 \cdot\left(x_{11}+x_{21}+x_{31}+x_{31}\right)+10.24 \cdot\left(x_{12}+x_{22}+x_{32}+x_{42}\right) \rightarrow \min
$$

Constraints:

1) $0.1 \cdot x_{11}+0.14 \cdot x_{12} \geq 120$.
2) $0.05 \cdot x_{21}+0.14 \cdot x_{22} \geq 150$.
3) $0.05 \cdot x_{31}+0.08 \cdot x_{32} \geq 110$.
4) $0.05 \cdot x_{41}+0.08 \cdot x_{42} \geq 100$.
5) $\frac{1}{2}\left(x_{11}-x_{12}+x_{21}-x_{22}+x_{31}-x_{32}+x_{41}-x_{42}\right) \geq 0$.

We solved this problem with the help of MS Excel:

| Number of calls | Day time | Evening time |
| :--- | :--- | ---: |
| Married Women | 1200 | 0 |
| Married Men | 0 | 1072 |


| Single Women | 2200 | 0 |
| :--- | ---: | ---: |
| Single Men | 2000 | 0 |


| Number of Responses | \% during day time | \% during <br> evening |  |  |  |
| :--- | ---: | ---: | ---: | ---: | :---: |
| A Married Woman | $10 \%$ | $14 \%$ | 120 | $>=$ |  |
| A Married Man | $5 \%$ | $14 \%$ | 150 | $>=$ |  |
| A Single Woman | $5 \%$ | $8 \%$ | 110 | $>=$ |  |
| A Single Man | $5 \%$ | $8 \%$ | 100 | $>=$ |  |


| At most half of all phone calls can be made during evening: | 2164 | $>=$ | 0 |
| :--- | :--- | :--- | :--- |


| Costs |  |
| :--- | ---: |
| \$1 per every call | 6472 |
| Picked up and refused | 1821,68 |
| Participeted | 22933,6 |
| Total | 31227,28 |

According to the Excel solution we should make 1200 phone calls to the married woman during a day time; 1072 phone calls to the married man durring evening time; 2200 phone calls to the single woman during a day time; 2000 phone calls to a single man during a day time. And in this case we will complete our survey (we will have answers from 120 married woman, 150 married man, 110 single woman and 100 single man) and the cost of the survey equal $\$ 31227.28$.

Answer: we should make 1200 phone calls to the married woman during a day time; 1072 phone calls to the married man durring evening time; 2200 phone calls to the single woman during a day time; 2000 phone calls to a single man during a day time. And in this case we will complete our survey (we will have answers from 120 married woman, 150 married man, 110 single woman and 100 single man) and the cost of the survey equal $\$ 31227.28$.
(b) Let take that the total number of the newspaper ads is $x$ and the total number of the TV commercials is $y$.

We know that it costs $\$ 2,000$ per newspaper ads and $\$ 15,000$ per TV commercials and we know that thw annual marketing budger is $\$ 200,000$. If the total number of the newspaper ads
represented by $x$ and the total number of the TV commercials represented by $y$, we will have the constraint for the budget:

$$
2000 \cdot x+15000 \cdot y \leq 200000
$$

We know also that at most 50 newspaper ads and 12 TV commecials can be placed during a year:

$$
\begin{aligned}
& x \leq 50 \\
& y \leq 12
\end{aligned}
$$

The number of new customers can be reached by each advertisement is shown in the table below:

| Number of ads | Customers reached per ad |
| :--- | :--- |
| Newspaper ads up to 10 times | 1000 |
| Newspaper ads from 11 to 20 times | 600 |
| Newspaper ads above 21 times | 200 |
| TV commercials up to 5 times (max is 4) | 10,000 |
| TV commercials from 5 to 10 times | 6,000 |
| TV commercials above 11 times | 2,000 |

According to this table we have next situation for the objective function (we should maximise the number of customers reached by ads):

1) From the newspaper ads:

- if the number of the newspaper ads is less or equal 10, then:

$$
\begin{aligned}
& x \leq 10: \\
& C_{\text {newspaper }}=1000 \cdot x .
\end{aligned}
$$

- if the number of the newspaper ads is more or equal 11 , but less or equal to 20 :

$$
\begin{aligned}
& 11 \leq x \leq 20: \\
& C_{\text {newspaper }}=1000 \cdot 10+600 \cdot(x-10)=600 \cdot x+4000
\end{aligned}
$$

- if the number of the newspaper ads is more or equal to 21 :

$$
\begin{aligned}
& x \geq 21: \\
& C_{\text {newspaper }}=1000 \cdot 10+600 \cdot 10+200 \cdot(x-20)=200 \cdot x+12000 .
\end{aligned}
$$

2) For the TV commercials:

- if the number of the TV commercials is less than 5, then:

$$
\begin{aligned}
& y \leq 5: \\
& C_{T V}=10000 \cdot y .
\end{aligned}
$$

- if the number of the TV commercials is more or equal 5 , but less or equal to 10 :

$$
\begin{aligned}
& 5 \leq y \leq 10 \\
& C_{T V}=10000 \cdot 5+6000 \cdot(y-5)=6000 \cdot y+20000
\end{aligned}
$$

- if the number of the TV commercials is more or equal to 11 :

$$
\begin{aligned}
& y \geq 11: \\
& C_{T V}=10000 \cdot 5+6000 \cdot 5+2000 \cdot(y-10)=2000 \cdot y+60000 .
\end{aligned}
$$

Linear programming problem:
The objective function (we should minimized the cost):

$$
C=\left\{\begin{array}{l}
1000 \cdot x+10000 \cdot y, x \leq 10, y \leq 5 \\
1000 \cdot x+6000 \cdot y+20000, x \leq 10,5 \leq y \leq 10 \\
1000 \cdot x+2000 \cdot y+60000, x \leq 10, y \geq 11 \\
600 \cdot x+4000+10000 \cdot y, 11 \leq x \leq 20, y \leq 5 \\
600 \cdot x+6000 \cdot y+24000,11 \leq x \leq 20,5 \leq y \leq 10 \rightarrow \max \\
600 \cdot x+2000 \cdot y+64000,11 \leq x \leq 20, y \geq 11 \\
200 \cdot x+12000+10000 \cdot y, x \geq 21, y \leq 5 \\
200 \cdot x+6000 \cdot y+32000, x \geq 21,5 \leq y \leq 10 \\
200 \cdot x+2000 \cdot y+72000, x \geq 21, y \geq 11
\end{array}\right.
$$

The constraints:

1) $2000 \cdot x+15000 \cdot y \leq 200000$.
2) $x \leq 50$.
3) $y \leq 12$.

We solved this problem with the help of MS Excel:

|  | Number |
| :--- | ---: |
| Newspaper ads | 25 |
| TV ads | 10 |


|  | x | y |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Cost | 2000 | 15000 | $=$ | $200000<=$ | 200000 |
| Maximum number of Newspaper ads | 1 | 0 | $=$ | $25<=$ | 50 |
| Maximum number of TV ads | 0 | 1 | $=$ | $10<=$ | 12 |


| Number of customers reached by ads |  |
| :--- | ---: |
| Newspaper ads | 17000 |
| TV ads | 80000 |
| Total | 97000 |

According to the Excel solution to maximise the number of customers reached by ads,Tim should make 25 newspaper ads and 10 TV commercials. In this case the number of customers reached by ads will be equal to 97,000 .

Answer: to maximise the number of customers reached by ads,Tim should make 25 newspaper ads and 10 TV commercials. In this case the number of customers reached by ads will be equal to 97,000 .

