Sample: Statistics and Probability - Jointly Continuous Random Variables

Question 1
Let X and Y be jointly continuous random variables with joint density function

$$f(x, y) = c(y^2 - x^2)e^{-y}, \quad -y \leq x \leq y, \quad 0 < y < \infty.$$

a) Find c so that f is a density function.
b) Find the marginal densities of X and Y.
c) Find the expected value of X.

Solution.

(a) If f is a true density function the following must be true:

$$\int_D f(x, y) = 1$$

Where D is domain of the function.

In our case the equality looks:

$$\int_{-y}^{y} \int_{0}^{\infty} c(y^2 - x^2)e^{-y} dx \, dy = 1$$

Solve the equation (use integration by parts) to get c:

$$\int_{-y}^{y} \int_{0}^{\infty} c(y^2 - x^2)e^{-y} dx \, dy = c \int_{-y}^{y} \left(y^2 - x^2 \right) e^{-y} \, dx \, dy = c \int_{-y}^{y} \left(y^2 - \frac{x^2}{3} \right) e^{-y} \, dy$$

$$= c \int_{-y}^{y} e^{-y} \left(y^2 - \frac{y^3}{3} \right) dy$$

$$= \frac{4}{3} c \int_{0}^{\infty} y^3 e^{-y} \, dy \quad \text{let } u = y^3, \, dv = e^{-y} \, dy$$

$$= \frac{4}{3} \left(\frac{y^3}{e^y} \right)_{-y}^{y} + 3 \int_{0}^{\infty} y^2 e^{-y} \, dy$$

$$= \frac{4}{3} c \left(\frac{y^3}{e^y} \right)_{0}^{\infty} + 3 \int_{0}^{\infty} y^2 e^{-y} \, dy$$

$$= \frac{4}{3} \left(\frac{y^3}{e^y} \right)_{0}^{\infty} + 3 \left(\frac{y^2}{e^y} \right)_{0}^{\infty} + 6 \left(-y e^{-y} \right)_{0}^{\infty}$$

$$= \frac{4}{3} \left(\frac{0}{e^0} - 3 \frac{1}{e^0} - 6 \frac{1}{e^0} - 6 \frac{1}{e^0} \right)$$

$$= \frac{4}{3} \left(0 + 0 + 0 - 0 - 0 - (-6) \right) = 8c = 1$$

Thus, the solution is:
\[c = \frac{1}{8} \]

(b) \[f_X(x) = \int f(x, y) dy = \int_0^\infty c(y^2 - x^2)e^{-y} dy = \frac{1}{8} \int_0^\infty (y^2 - x^2)e^{-y} dy \]

\[= \left| \text{let } u = y^2 - x^2, dv = e^{-y} dy \right| = \frac{1}{8} \left(-(y^2 - x^2)e^{-y} \right)_0^\infty + 2 \int_0^\infty ye^{-y} dy \]

\[= \frac{1}{8} \left(-(y^2 - x^2)e^{-y} \right)_0^\infty + 2 (-ye^{-y})_0^\infty + 2 \int_0^\infty e^{-y} dy \]

\[= \frac{1}{8} \left(-(y^2 - x^2)e^{-y} - 2ye^{-y} - 2e^{-y} \right)_0^\infty = \frac{1}{8} (0 + 0 + (0 + x^2) \cdot 1 + 0 + 2 \cdot 1) = \frac{x^2 + 2}{8} - y \leq x \leq y \]

\[f_Y(y) = \int_x f(x, y) dx = \int_y c(y^2 - x^2)e^{-y} dx = \frac{1}{8} e^{-y} \int_y^{\infty} (y^2 - x^2) dx \]

\[= \frac{1}{8} e^{-y} \cdot \left(y^2 x - \frac{x^3}{3} \right)_y^{\infty} = \frac{1}{8} e^{-y} \left(y^2 \cdot y - \frac{y^3}{3} - y^2 \cdot (-y) + \frac{(-y)^3}{3} \right) \]

\[= \frac{1}{8} e^{-y} \cdot \frac{4}{3} y^3 = \frac{y^3 e^{-y}}{6}, y \geq 0 \]

(c) \[E(X) = \int_x x f_X(x) dx = \int_y x \cdot \frac{y^2 + 2}{8} dx = \frac{1}{8} \int_y^{\infty} (x^3 + 2x) dx = \frac{1}{8} \left(\frac{x^4}{4} + x^2 \right)_y^{\infty} \]

\[= \frac{1}{8} \left(\frac{y^4}{4} + y^2 - \frac{(-y)^4}{4} - (-y)^2 \right) = 0 \]
Question 2
Let X and Y be independent standard uniform random variables and let a, b and c be positive real numbers. Find the probability that $aX + bY \leq c$.

Solution.
X and Y are uniformly distributed in the interval $[0, 1]$. Thus, aX and bY are uniformly distributed in the intervals $[0, a]$ and $[0, b]$ correspondently. Thus, the variable (X, Y) is uniformly distributed in the following rectangle:

The condition $aX + bY \leq c$ corresponds to the following one:
$$bY \leq -aX + c$$

Or, graphically, bY locates under the line $bY = -aX + c$.

The corresponding probability equals to percentage of rectangle that locates under the line $bY = -aX + c$.

Consider the possible cases of relations between a, b and c and find the area in each case.

Case 1: $c \leq a$ and $c \leq b$

The area under the line equals to area of a right triangle with cathetus of length c:
$$S1 = \frac{c^2}{2}$$

Case 2: $b < c < a$
The area under the line equals to area of a right triangle with cathetus of length \(c \) minus area of a right triangle with cathetus of length \((c-b) \):

\[
S_2 = \frac{c^2 - (c-b)^2}{2} = \frac{2bc - b^2}{2}
\]

Case 3: \(a < c < b \)

The figure for this case will be symmetrical to case 2 figure. The corresponding formulas for area are the same too, just switch a and b:

\[
S_3 = \frac{c^2 - (c-a)^2}{2} = \frac{2ac - a^2}{2}
\]

Case 4: \(b < a < c \leq a + b \)

The area under the line equals to area of a right triangle with cathetus of length \(c \) minus area of a right triangle with cathetus of length \((c-b) \) and minus area of a right triangle with cathetus of length \((c-a) \):

\[
S_4 = \frac{c^2 - (c-b)^2 - (c-a)^2}{2}
\]

Case 5: \(a < b < c \leq a + b \)

The figure for this case will be symmetrical to case 4 figure. The corresponding formulas for area are the same too, just switch a and b:
Case 6: \(c > a + b \)

In this case the whole rectangle will locate under the line:

\[
S_6 = ab
\]

Summarize the areas found to build one function:

\[
S = \begin{cases}
\frac{c^2}{2}, & \text{if } c \leq a \text{ and } c \leq b \\
\frac{c^2 - (c - b)^2}{2}, & \text{if } b < c \leq a \\
\frac{c^2 - (c - a)^2}{2}, & \text{if } a < c \leq b \\
\frac{c^2 - (c - b)^2 - (c - a)^2}{2}, & \text{if } a < b < c \leq a + b \text{ or } b < a < c \leq a + b \\
ab, & \text{if } c > a + b
\end{cases}
\]

Combine and transform some of the cases to get more compact form:

\[
S = \begin{cases}
\frac{c^2}{2}, & \text{if } c \leq \min(a, b) \\
\frac{c^2 - (c - \min(a, b))^2}{2}, & \text{if } \min(a, b) < c \leq \max(a, b) \\
\frac{c^2 - (c - b)^2 - (c - a)^2}{2}, & \text{if } \max(a, b) < c \leq a + b \\
ab, & \text{if } c > a + b
\end{cases}
\]

Area of the rectangle:

\[
S_{\text{full}} = ab
\]

Use the formulas for areas to find the probability for each case:
\[P(aX + bY \leq c) = \begin{cases}
\frac{c^2}{2ab}, & \text{if } c \leq \min(a, b) \\
\frac{c^2 - (c - \min(a, b))^2}{2ab}, & \text{if } \min(a, b) < c \leq \max(a, b) \\
\frac{c^2 - (c - b)^2 - (c - a)^2}{2ab}, & \text{if } \max(a, b) < c \leq a + b \\
1, & \text{if } c > a + b
\end{cases} \]

Question 3

Show that if \(X \) and \(Y \) are jointly continuous, then \(X + Y \) is a continuous random variable while \(X, Y \) and \(X + Y \) are not jointly continuous.

Solution.

If \(X \) and \(Y \) are jointly continuous random variables, there exists a continuous density function \(f_{XY}(x, y) \) such that

\[P(X \leq s, Y \leq t) = \int_{x \leq s, y \leq t} f_{XY}(x, y) \, dx \, dy \]

Now, consider the random variable \(X + Y \). Consider the following probability.

\[P(X + Y \leq a) = \int_{s \leq a} P(X \leq s, Y \leq a - s) \, ds = \int_{s \leq a} \int_{x \leq s, y \leq a - s} f_{XY}(x, y) \, dx \, dy \, ds \]

The function \(f_{XY}(x, y) \) is continuous in \(\mathbb{R}^2 \). Thus, the integral above has a clear geometrical sense – volume of the curvilinear cone. Thus, the probability considered exists and is continuous for such \(X \) and \(Y \). So, \(X + Y \) is a continuous variable.

Now assume that \(X, Y \) and \(X + Y \) are jointly continuous. In this case there must exist a function \(f_{XY,X+Y}(x, y, x + y) \) such that

\[P_j = P(X \leq s, Y \leq t, X + Y \leq a) = \int_{x \leq s, y \leq t, x + y \leq a} f_{XY,X+Y}(x, y, x + y) \, dx \, dy \]

When looking at the formula above we can understand that the conditions \(x \leq s, y \leq t, x + y \leq a \) are not independent. There are “border” points where the final equation will change its shape.

For example, assume \(s \) and \(t \) increase from some point and tend to the line \(s + t = a \). Below this line \(s + t = a - \epsilon \) the probability \(P_j \) will exist and will be non-zero in general case. But just above the line \(s + t = a + \epsilon \) we are sure to get \(P_j = 0 \), because if \(s + t > a \) the events \(x \leq s, y \leq t, x + y \leq a \) will never occur simultaneously.

As we can see, \(P_j \) will have a “jump” in the set of points \(s + t = a \). Thus, the probability is not continuous and so, \(X, Y \) and \(X + Y \) are not jointly continuous.