Sample: Mechanics Kinematics Dynamics - Dynamics Assignment

A ball of negligible size and mass m is at rest at A (i.e., $\theta=0$) in the smooth circular slot that lies in the vertical plane. It is given a small nudge to the right and slides down the slot. Determine the force on the ball due to the slot as a function of the angle θ and evaluate it for $\theta=\pi$.

Solution.

A free body diagram is shown in Figure 1. Introduce a local Cartesian coordinate system (XY) with the center in the center of the ball. The x-axis is directed along the radius of the circle, the y axis is directed along the tangent to the circle. Write Newton's second law in the projections on the axis:
$X: m a_{n}=m g \cos \theta+N ;$
$Y: m a_{\tau}=m g \sin \theta$,

Figure 1.
where N is the force acting on the ball from the slot, $a_{n}=\frac{v^{2}}{R}$ is the centripetal acceleration of the ball, $a_{\tau}=\frac{d v}{d t}$ is the tangential acceleration of the ball, v is the velocity of the ball (the velocity vector \vec{v} tangential to the circumference), g is the acceleration of free fall. Note that from the definition of velocity and the relation between the arc length and the angle it follows:

$$
v=\frac{d y}{d t}=\frac{R d \theta}{d t}
$$

Now we can write the following system of equations:

$$
\left\{\begin{array} { l l }
{ \frac { m v ^ { 2 } } { R } = m g \operatorname { c o s } \theta + N , } & { (1) } \\
{ \frac { m d v } { d t } = m g \operatorname { s i n } \theta , } \\
{ v = \frac { R d \theta } { d t } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\frac{m v^{2}}{R}=m g \cos \theta+N, \\
\frac{d v}{d t}=g \sin \theta \\
\frac{d \theta}{d t}=\frac{v}{R}
\end{array}\right.\right.
$$

To solve this system, divide equation (2) by equation (3):

$$
\frac{d v}{d t} \frac{d t}{d \theta}=\frac{g R \sin \theta}{v} ; \frac{d v}{d \theta}=\frac{g R \sin \theta}{v} ; v d v=g R \sin \theta d \theta
$$

Integrate the last equation:

$$
\int v d v=\int g R \sin \theta d \theta ; \frac{v^{2}}{2}=-g R \cos \theta+C
$$

where C is a constant. Find C from the condition that $v=0$ when $\theta=0$:

$$
C-g R \cos 0=0 ; C-g R=0 ; C=g R .
$$

So we have:

$$
\frac{v^{2}}{2}=g R-g R \cos \theta ; v^{2}=2 g R(1-\cos \theta)
$$

Substitute this expression into equation (1):

$$
\frac{m \cdot 2 g R(1-\cos \theta)}{R}=m g \cos \theta+N ; 2 m g-2 m g \cos \theta=m g \cos \theta+N ; N(\theta)=m g(2-3 \cos \theta)
$$

If $N>0$ then the force N is directed radially towards the center of the circle, if $N<0$ then the force N is directed radially from the center of the circle. Find N for $\theta=\pi$:

$$
N(\pi)=m g(2-3 \cos \pi)=5 m g .
$$

Check our solution using the law of conservation of energy. Assume that the potential energy of the ball at the point B equals zero. Then the potential energy for the angle θ is $E_{p}=m g R+m g R \cos \theta=m g R(1+\cos \theta)$.
The kinetic energy is $E_{k}=\frac{m v^{2}}{2}$.
According to the energy conservation law:

$$
E_{k}+E_{p}=\text { const }
$$

At the point B

$$
E_{p}=2 m g R, E_{k}=0
$$

So we have:

$$
2 m g R=\frac{m v^{2}}{2}+m g R(1+\cos \theta) ; v^{2}=2 g R(1-\cos \theta)
$$

Substituting this expression into equation (1), we find $N(\theta)=m g(2-3 \cos \theta)$.

Answer: $N(\theta)=m g(2-3 \cos \theta) ; \quad N(\pi)=5 m g$.

