Sample: Multivariable Calculus - Derivatives

1)

Let's substitute

$$
u(x, t)=2 k^{2} \operatorname{sech}^{2}\left(k\left(x-4 k^{2} t\right)\right)
$$

into the equation

$$
\begin{gathered}
u_{t}+6 u u_{x}+u_{x x x}=0 \\
u_{t}=2 k^{2} \cdot 2 \operatorname{sech}\left(k\left(x-4 k^{2} t\right)\right) \\
\cdot \tanh \left(k\left(x-4 k^{2} t\right)\right)\left(-\operatorname{sech}\left(k\left(x-4 k^{2} t\right)\right)\right)\left(-4 k^{3}\right) \\
=16 k^{6} \operatorname{sech}^{2}\left(k\left(x-4 k^{2} t\right)\right) \cdot \tanh \left(k\left(x-4 k^{2} t\right)\right) \\
u_{x}=2 k^{2} \cdot 2 \operatorname{sech}\left(k\left(x-4 k^{2} t\right)\right) \cdot \tanh \left(k\left(x-4 k^{2} t\right)\right)\left(-\operatorname{sech}\left(k\left(x-4 k^{2} t\right)\right)\right) \\
\cdot k=-4 k^{3} \operatorname{sech}^{2}\left(k\left(x-4 k^{2} t\right)\right) \tanh \left(k\left(x-4 k^{2} t\right)\right) \\
u_{x x x}=16 k^{5} \tanh \left(k\left(x-4 k^{2} t\right)\right) \operatorname{sech}^{2}\left(k\left(x-4 k^{2} t\right)\right)\left(2 \operatorname{sech}^{2}\left(k\left(x-4 k^{2} t\right)\right)\right. \\
\left.-\tanh ^{2}\left(k\left(x-4 k^{2} t\right)\right)\right)
\end{gathered}
$$

After substituting derivatives into the equation we get:

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

So $u(x, t)$ satisfies the equation.
2)

$$
T(x, y, z)=x^{2}-y^{2}+z^{2}+x z^{2}
$$

Let's find the parameterization of the curve.

$$
\begin{gathered}
z=t \\
3 x^{2}-y^{2}=t \\
2 x^{2}+2 y^{2}=t^{2} \\
x^{2}=\frac{1}{8}\left(t^{2}+t\right)
\end{gathered}
$$

$$
y^{2}=3 x^{2}-t=\frac{1}{8}\left(3 t^{2}-5 t\right)
$$

So

$$
(x, y, z)=\left(\frac{\sqrt{t^{2}+t}}{2 \sqrt{2}}, \frac{\sqrt{3 t^{2}-5 t}}{2 \sqrt{2}}, t\right)
$$

Let's change parametrization so speed at $t=0$ is v.

$$
\begin{gathered}
\left|x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right|^{2}=\left(\frac{2 t+1}{4 \sqrt{2} \sqrt{t^{2}+t}}\right)^{2}+\left(\frac{6 t-5}{4 \sqrt{2} \sqrt{3 t^{2}-5 t}}\right)^{2}+1 \\
=\frac{(2 t+1)^{2}}{32\left(t^{2}+t\right)}+\frac{(6 t-5)^{2}}{32\left(3 t^{2}-5 t\right)}+1
\end{gathered}
$$

AT $t=0$ we have:

$$
\text { speed }=
$$

At point (1,1,2):

$$
\begin{gathered}
z^{\prime}=6 x x^{\prime}-2 y y^{\prime} \\
4 x x^{\prime}+4 y y^{\prime}-2 z z^{\prime}=0
\end{gathered}
$$

Substituting $x=1 ; y=1 ; z=2$ we have:

$$
\begin{gathered}
z^{\prime}=6 x^{\prime}-2 y^{\prime} \\
4 x^{\prime}+4 y^{\prime}-4 z^{\prime}=0
\end{gathered}
$$

Solving this with $x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=v^{2}$ we have:

$$
x^{\prime}(0)=\frac{3 v}{7 \sqrt{2}} ; y^{\prime}(0)=\frac{5 v}{7 \sqrt{2}} ; z^{\prime}(0)=\frac{8 v}{7 \sqrt{2}}
$$

Then rate of change of temperature at $t=0$ is

$$
\begin{aligned}
2 x \cdot x^{\prime}(0)- & 2 y y^{\prime}(0)+2 z z^{\prime}(0)+x^{\prime}(0) z^{2}+x z z^{\prime}(0) \\
& =2 \cdot 1 \cdot \frac{3 v}{7 \sqrt{2}}-2 \cdot 1 \cdot \frac{5 v}{7 \sqrt{2}}+2 \cdot 2 \cdot \frac{8 v}{7 \sqrt{2}}+\frac{3 v}{7 \sqrt{2}} \cdot 2^{2}+1 \cdot 2 \cdot \frac{8 v}{7 \sqrt{2}} \\
& =\frac{56 v}{7 \sqrt{2}}=4 \sqrt{2} v
\end{aligned}
$$

3)

Let's compute derivatives of u by new variables.

$$
\begin{gathered}
\frac{d u}{d r}=\frac{d u}{d x} \frac{d x}{d r}+\frac{d u}{d y} \frac{d y}{d r}=\cos \theta \frac{d u}{d x}+\sin \theta \frac{d u}{d y} \\
\frac{d^{2} u}{d r^{2}}=\cos ^{2} \theta \frac{d^{2} u}{d x^{2}}+2 \cos \theta \sin \theta \frac{d^{2} u}{d x d y}+\sin ^{2} \theta \frac{d^{2} u}{d y^{2}} \\
\frac{d u}{d \theta}=-r \sin \theta \frac{d u}{d x}+r \cos \theta \frac{d u}{d y} \\
\frac{d^{2} u}{d \theta^{2}}=-r\left(\cos \theta \frac{d u}{d x}+\sin \theta \frac{d u}{d y}\right) \\
+r^{2}\left(\sin ^{2} \theta \frac{d^{2} u}{d x^{2}}-2 \cos \theta \sin \theta \frac{d^{2} u}{d x d y}+\cos ^{2} \theta \frac{d^{2} u}{d y^{2}}\right)
\end{gathered}
$$

Dividing both sides by r^{2} and using expression for $\frac{d u}{d r}$ we have:

$$
\frac{1}{r^{2}} \frac{d^{2} u}{d \theta^{2}}=-\frac{1}{r} \frac{d u}{d r}+\sin ^{2} \theta \frac{d^{2} u}{d x^{2}}-2 \cos \theta \sin \theta \frac{d^{2} u}{d x d y}+\cos ^{2} \theta \frac{d^{2} u}{d y^{2}}
$$

Adding last 2 relation we have:

$$
\frac{d^{2} u}{d r^{2}}+\frac{1}{r^{2}} \frac{d^{2} u}{d \theta^{2}}=-\frac{1}{r} \frac{d u}{d r}+\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}
$$

So

$$
\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}=\frac{d^{2} u}{d r^{2}}+\frac{1}{r^{2}} \frac{d^{2} u}{d \theta^{2}}+\frac{1}{r} \frac{d u}{d r}
$$

So Laplace equation becomes:

$$
\frac{d^{2} u}{d r^{2}}+\frac{1}{r^{2}} \frac{d^{2} u}{d \theta^{2}}+\frac{1}{r} \frac{d u}{d r}=0
$$

4)

(a)

Operator F is defined on matrices which have the inverse.

$$
\operatorname{dom} F=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1} x_{4} \neq x_{2} x_{3}\right\}
$$

(b)

Let's write F explicitly:

$$
\begin{gathered}
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{x_{1} x_{4}-x_{2} x_{3}}\left(\begin{array}{cc}
x_{4} & -x_{2} \\
-x_{3} & x_{1}
\end{array}\right)= \\
\left(\frac{x_{4}}{x_{1} x_{4}-x_{2} x_{3}},-\frac{x_{2}}{x_{1} x_{4}-x_{2} x_{3}},-\frac{x_{3}}{x_{1} x_{4}-x_{2} x_{3}}, \frac{x_{1}}{x_{1} x_{4}-x_{2} x_{3}}\right)
\end{gathered}
$$

Matrix of derivatives:

$$
\frac{d F}{d x}=-\frac{1}{\left(x_{1} x_{4}-x_{2} x_{3}\right)^{2}} .
$$

$$
\begin{aligned}
& \cdot\left(\begin{array}{cccc}
x_{4} \cdot x_{4} & x_{4} \cdot\left(-x_{3}\right) & x_{4} \cdot\left(-x_{2}\right) & -\left(x_{1} x_{4}-x_{2} x_{3}\right)+x_{4} x_{1} \\
-x_{2} x_{4} & \left(x_{1} x_{4}-x_{2} x_{3}-\left(-x_{2} x_{3}\right)\right. & -x_{2}\left(-x_{2}\right) & -x_{2} x_{1} \\
-x_{3} x_{4} & -x_{3}\left(-x_{3}\right) & \left(x_{1} x_{4}-x_{2} x_{3}\right)-x_{3}\left(-x_{2}\right) & -x_{3} x_{1} \\
-\left(x_{1} x_{4}-x_{2} x_{3}\right)+x_{1} x_{4} & x_{1}\left(-x_{3}\right) & x_{1} \cdot x_{1}
\end{array}\right) \\
& =-\frac{1}{\left(x_{1} x_{4}-x_{2} x_{3}\right)^{2}}\left(\begin{array}{cccc}
x_{4}^{2} & -x_{3} x_{4} & -x_{2} x_{4} & x_{2} x_{3} \\
-x_{2} x_{4} & x_{1} x_{4} & x_{2}^{2} & -x_{2} x_{1} \\
-x_{3} x_{4} & x_{3}^{2} & x_{1} x_{4} & -x_{3} x_{1} \\
x_{2} x_{3} & -x_{1} x_{3} & -x_{1} x_{2} & x_{1}^{2}
\end{array}\right)
\end{aligned}
$$

